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Universal relations that are independent of the equation of state (EOS) for neutron star matter are
valuable, if they exist, for extracting the neutron star properties, which generally depend on the EOS. In this
study, we newly derive the universal relations predicting the gravitational wave frequencies for the
fundamental (f), the 1st pressure (p1), and the 1st spacetime (w1) modes and the damping rate for the f-
and w1-modes as a function of the dimensionless tidal deformability. In particular, with the universal
relations for the f-modes one can predict the frequencies and damping rate with less than 1% accuracy for
canonical neutron stars.
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I. INTRODUCTION

Thanks to GW170817 event, the first detection of the
gravitational waves from binary neutron star merger has
been initiated to explain the nature of dense matter at
supranuclear densities inside the neutron stars as well as
placed the bound on the canonical neutron star tidal
deformability [1]. Subsequently, the 2nd detection of gravi-
tational waves from the binary neutron star merger,
GW190425, has succeeded [2]. The event rate from the
binary neutron star merger will become more and more in
the future observations, owing to the improvement of the
gravitational wave detectors’ sensitivity. Also, GW170817
measurement has constrained the equation of state (EOS) at
twice nuclear saturation density [3]. However, due to the
nuclear saturation properties, it is quite difficult for
obtaining the nuclear information for a high density region
via terrestrial experiments, while the density inside the
neutron star significantly exceeds the nuclear saturation
density [4]. This is a reason why the EOS for neutron star
matter is not fixed yet, although various EOSs have been
theoretically proposed up to now. One of the possibility for
understanding the EOS for dense matter must be astronomi-
cal observations. In practice, owing to the discovery of the
2 M⊙ neutron stars, some of the soft EOSs, with which the
predictedmaximummass does not reach the observedmass,
have been ruled out [5–7]. TheGW170817 event also tells us
the constraint on the 1.4 M⊙ neutron star radius [8], from
which too still EOSs may be unsuitable. In addition, the
relativistic effect, i.e., a light bending due to the strong

gravitational field involved by a neutron star, enables us
primarily to probe the neutron star compactness,M=R, with
massM and radius R, which in turn restricts the EOS (e.g.,
[9–14]). In fact, the Neutron star Interior Composition
Explorer (NICER), which is an x-ray timing and spectros-
copy instrument on the International Space Station, is now
operating and has already given us the constraint on themass
and radius of the millisecond pulsars, i.e., PSR J0030þ
0451 [15,16] and PSR J0740þ 6620 [17,18]. Such observ-
ables can be obtained from the neutron star EOS (for
example, EOS based on the relativistic framework and
Skyrme type interaction) by solving equations for hydro-
static equilibrium, the so-called Tolman-Oppenheimer-
Volkoff equation. Further, comparing astrophysical data
puts important constraints on the EOS models and, hence,
the nature of the dense matter of neutron stars.
As another possibility for getting the neutron star

properties, the asteroseismology is also powerful method,
which is a similar technique to seismology on the Earth
and helioseismology on the Sun. That is, since the
oscillation frequency of the object strongly depends on
its interior information, one can inversely extract the
object’s properties by observing the corresponding fre-
quency. For example, by identifying the magnetar quasi-
periodic oscillations with the crustal oscillations in
neutron stars, the crust EOS has been constrained [19–
21]. By observing the gravitational waves from the
neutron star, one may see the neutron star mass, radius,
and EOS (e.g., [22–36]). Recently, there are attempts for
understanding the gravitational wave signals appearing in
the numerical simulation for core-collapse supernovae
with this technique (e.g., [37–46]).*sotani@yukawa.kyoto-u.ac.jp

PHYSICAL REVIEW D 104, 123002 (2021)

2470-0010=2021=104(12)=123002(7) 123002-1 © 2021 American Physical Society

https://orcid.org/0000-0002-3239-2921
https://orcid.org/0000-0003-1964-057X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.123002&domain=pdf&date_stamp=2021-12-01
https://doi.org/10.1103/PhysRevD.104.123002
https://doi.org/10.1103/PhysRevD.104.123002
https://doi.org/10.1103/PhysRevD.104.123002
https://doi.org/10.1103/PhysRevD.104.123002


In any case, the universal relation independently of the
EOS is very important, if it exits. This is because it is
generally very difficult for extracting the information of
neutron star from the direct observation(s) of gravitational
wave frequency, due to the uncertainty in the EOS for
neutron star matter. Up to now, a few universal relations for
eigenfrequencies from the neutron stars have been derived,
i.e., the fundamental (f) mode frequency as a function of
the neutron star average density, the f-mode frequency as a
function of the neutron star compactness, and the spacetime
(w) mode frequency and damping rate as a function of the
stellar compactness [22–24,27–29,32,34,36]. If the char-
acteristics of the gravitational waves are observationally
determined, these universal relations will be helpful for
constraining the global properties of the neutron stars and
then be used to extract the information of the underlying
EOS of dense neutron-rich nuclear matter. In this study, we
newly find the other universal relations as a function of the
dimensionless tidal deformability, Λ, focusing on the
feature that the relation between the neutron star compact-
ness and Λ is almost independent of the EOS. With respect
to the universal relation between the quasinormal modes of
neutron star and tidal deformability, several studies have
already been done with the f-modes [47–49] and with the
w1-modes [50,51]. In a similar way, we will see the
universal relation not only the f- and w1-modes but also
the p1-modes for a wider range of Λ, adopting various
realistic EOSs. In particular, we will show that the universal
relations for the f-mode frequency and damping rate
derived in this study can predict the corresponding values
with less than 1% accuracy. We note that the resultant
universal relations are valid only for cold neutron stars that
are described by barotropic EOSs. That is, they may not be
valid, for example, for hypermassive neutron stars pro-
duced through the binary merger due to the extra degrees of
freedom, e.g., temperature, attributed to the EOS.
This manuscript is organized as follows. In Sec. II, we

show the neutron star models considered in this study,
where we show the relation between the stellar compact-
ness and Λ. In Sec. III, we derive the universal relations by
showing the frequency and damping rate as a function of Λ
for various EOSs. Then, in Sec. IV, we conclude this study.
Unless otherwise mentioned, we adopt geometric units in
the following, c ¼ G ¼ 1, where c denotes the speed of
light, and the metric signature is ð−;þ;þ;þÞ.

II. NEUTRON STAR MODELS

To construct the neutron star models, which become the
background models for linear analysis, one has to prepare
the EOS for neutron star matter. In this study, we adopt the
same EOSs as in Ref. [36], i.e., the EOSs based on the
relativistic framework, DD2 [52], Miyatsu [53], and Shen
[54]; the EOSs with the Skyrm-type interaction, FPS [55],
SKa [56], SLy4 [57], and SLy9 [58]; and the EOS
constructed with the variational method, Togashi [59].

We remark that all EOSs adopted here is the unified
EOS, i.e., the EOS for the crustal and core region of the
neutron star can be constructed with the same framework.
The EOS parameters for the EOSs adopted in this study are
listed in Table I together with the maximum mass of
the neutron star constructed with each EOS, where K0

and L are the incompressibility of the symmetric nuclear
matter and the density-dependence of the nuclear symmetry
energy, and η is the combination of K0 and L as η≡
ðK0L2Þ1=3 [60]. With the auxiliary parameter η, one can
estimate the properties of the low-mass neutron stars
[60,61] and also discuss the maximum mass [62,63].
The neutron star mass and radius relation constructed

with such EOSs are shown in Fig. 1, where for reference we
also show the maximum mass of neutron star observed so
far, i.e., M ¼ 2.08þ0.07

−0.07 M⊙ for PSR J0740þ 6620 [7,64],
and the 1.4 M⊙ neutron star radius constrained from
the gravitational wave observation, GW170817, i.e.,
R1.4 ≤ 13.6 km [8]. On the other hand, the terrestrial
experiments give us the constraint on K0 and L, e.g.,
K0 ¼ 230� 40 MeV [65] and L ≃ 58.9� 16 MeV [66].
Considering these astrophysical and experimental con-
straints, some of EOSs adopted in this study may be ruled
out, but we still adopt them to see the EOS dependence in
wide parameter range.
In addition, the dimensionless tidal deformability Λ is

another important quantity, which could be determined by
the gravitational wave observations during the inspiral
phase just before the coalescence of binary neutron star.
Λ is related to the dimensionless quadrupole tidal Love
number k2 as

Λ ¼ 2

3
k2C−5; ð1Þ

where C is the stellar compactness, i.e., C≡M=R, while k2
can be calculated according to Refs. [67,68], as

k2 ¼
8C5

5D
ð1 − 2CÞ2½2þ 2CðyR − 1Þ − yR�; ð2Þ

TABLE I. EOS parameters adopted in this study, K0, L, and η.
The maximum mass, Mmax=M⊙, for the neutron star and the
dimensionless tidal deformability, Λ1.4, for the 1.4 M⊙ neutron
star constructed with each EOS are also listed.

EOS K0 (MeV) L (MeV) η (MeV) Mmax=M⊙ Λ1.4

DD2 243 55.0 90.2 2.41 774.8
Miyatsu 274 77.1 118 1.95 601.0
Shen 281 111 151 2.17 1104.0
FPS 261 34.9 68.2 1.80 182.0
SKa 263 74.6 114 2.22 618.0
SLy4 230 45.9 78.5 2.05 321.7
SLy9 230 54.9 88.4 2.16 469.3
Togashi 245 38.7 71.6 2.21 309.2
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D ¼ 2C½6 − 3yR þ 3Cð5yR − 8Þ�
þ 4C3½13 − 11yR þ Cð3yR − 2Þ þ 2C2ð1þ yRÞ�
þ 3ð1 − 2CÞ2½2 − yR þ 2CðyR − 1Þ� lnð1 − 2CÞ: ð3Þ

In this equation, yR is the surface value of y, i.e.,
yR ≡ yðRÞ, which can be determined by integrating the
following differential equation with respect to yðrÞ from the
center to the surface with the central boundary condition of
yð0Þ ¼ 2.

r
dyðrÞ
dr

¼ −yðrÞ2 − yðrÞFðrÞ − r2QðrÞ; ð4Þ

with

FðrÞ ¼ r − 4πr3ðε − pÞ
r − 2m

; ð5Þ

QðrÞ ¼ 4πr
r − 2m

�
5εþ 9pþ εþ p

∂p=∂ε −
6

4πr2

�

− 4

�
mþ 4πr3p
r2 − 2mr

�
2

; ð6Þ

where m, ε, and p denote the mass enclosed within the
radius r, energy density, and pressure, respectively. In
Fig. 2 we show the dimensionless tidal deformabilityΛ as a
function of the stellar compactness for various EOSs. From
this figure, as discussed in Refs. [69,70], one can observe
that the dimensionless tidal deformability can be expressed
as the stellar compactness almost independently of the
EOSs. For reference, the values for the 1.4 M⊙ neutron star
are listed in Table I.

III. QUASINORMAL MODES AND
UNIVERSAL RELATIONS

On the background models of the static, spherically
symmetric neutron star discussed in the previous section,
the gravitational wave frequencies are determined by solving
the eigenvalue problem, where the frequencies become
complex, i.e., the real and imaginary parts correspond to
the oscillation frequency and damping rate, respectively. So,
these kinds of frequencies are sometimes called quasinormal
modes. The concrete perturbation equations and the imposed
boundary conditions are the same as in Refs. [25,45], where
how to deal with the boundary condition at the spacial
infinity is also discussed. Then, as in the previous study, we
focus on only the l ¼ 2 modes in this study, because they
are considered to be energetically dominant in the gravita-
tional wave radiation from neutron stars.
First, in Fig. 3 we show the f-mode frequencies, ff,

multiplied with the normalized neutron star mass (top-left
panel) and their damping rate, 1=τf, with the damping time
τf, multiplied with the normalized neutron star mass
(top-right panel) are shown as a function of Λ for various
EOSs. From this figure, one can see that these properties
are almost independent of the adopted EOS and can be
universally expressed as a function of Λ. In fact, we can
derive the fitting formulas given by

ffM1.4 ðkHzÞ¼4.2590−0.47874x−0.45353x2

þ0.14439x3−0.016194x4þ0.00064163x5;

ð7Þ

M1.4=τfð1= secÞ ¼ 10gfðxÞ; ð8Þ

gfðxÞ ¼ 0.82691þ 0.45894x − 0.27948x2 þ 0.036480x3

− 0.0025177x4 þ 6.2574 × 10−5x5; ð9Þ
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FIG. 1. Neutron star mass and radius relation for various EOSs.
For reference, the maximum mass observed so far, i.e., PSR
J0740þ 6620, and the 1.4 M⊙ neutron star radius constrained
from GW170817, i.e., R1.4 ≤ 13.6 km, are also shown.
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FIG. 2. Relation between the dimensionless tidal deformability
Λ and compactness M=R for various EOSs. We note that we
consider not only the canonical neutron star models but also
the neutron star model with quite low compactness such as
M=R ∼ 0.01, which corresponds to Λ ∼ 108, in this study.
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where M1.4 ≡M=ð1.4 M⊙Þ and x ¼ log10ðΛÞ, and the
predicted values with these universal relations are shown
with thick-solid lines in the corresponding panels. The
bottom panels show the relative deviation calculated with

Δ ¼ jA −Afitj
A

; ð10Þ

where A denotes the values of ffM1.4 or M1.4=τf deter-
mined by solving the eigenvalue problem, while Afit
denotes their values predicted with the fitting formulas.
From this figure, one can observe that ffM1.4 and M1.4=τf
are estimated with less than 1% accuracy for the canonical
neutron star models, whose Λ is in the range of Λ≲ 103.
Considering the universal relations for ffM1.4 andM1.4=τf
as a function of M=R derived in Ref. [36], which respec-
tively predict a few % accuracy and ∼5% accuracy, the new
universal relations derived in this study seem to be more
useful. We remark that the reason why the accuracy of the
universal relation for low-mass neutron star, e.g., Λ≳ 106,
becomes so bad comes from the avoided crossing between
the f- and p1-modes, where the behavior of the frequencies
and damping rate changes [36]. For example, as shown in
Fig. 8 in Ref. [36], the f-mode frequency bends at the point
where the avoided crossing between the f- and p1-modes
occurs, while stellar mass does not dramatically change

around this point. In addition, we note that we check the
other possibility for the universal relation as a function of
Λ, e.g., ffR10, ff=uc, R10=τf, and 1=ðucτfÞ, where R10 and
uc are defined by R10 ≡ R=ð10 kmÞ and uc ≡ ρc=ρ0 with
the central density ρc and the nuclear saturation density ρ0.
But, we find that the universal relation given by Eqs. (7)
and (8) are more accurate than these other possible
combinations.
Next, in Fig. 4 we show the p1-mode frequencies, fp1

,
multiplied with the normalized neutron star mass is shown
as a function of Λ in the top panel. Again, one can see that
these quantities are almost independent of the adopted
EOSs and universally expressed as a function of Λ, such as

fp1M1.4ðkHzÞ ¼ 10gp1 ðxÞ; ð11Þ

gp1
ðxÞ ¼ 1.0853 − 0.15527xþ 0.062266x2 − 0.023666x3

þ 0.0022713x4 − 7.3071 × 10−5x5; ð12Þ

with which the expected values are also shown with a thick-
solid line. In the bottom panel, we show the relative
deviation of the calculated frequencies from the fitting
formula in the similar way to the case of the f-modes. With
this universal relation, one can predict fp1

M1.4 within
∼10% accuracy for canonical neutron star, which is more
or less similar accuracy with the universal relation as a
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function ofM=R derived in Ref. [36]. On the other hand, as
shown in Refs. [23,36] it is difficult to derive a kind of
universal relation for the damping rate of the p1-modes,
which strongly depends on the EOSs.
Furthermore, in Fig. 5 we show the w1-mode frequen-

cies, fw1
, multiplied with the normalized neutron star radius

(top-left panel) and their damping rate, 1=τw1
, with the

damping time τw1
multiplied with the normalized neutron

star radius (top-right panel) are shown as a function ofΛ for
various EOSs. We note that, unlike the f- and p1-modes,
we can numerically determine the w1-mode quasinormal
modes only for the neutron star models with M=R≳ 0.05,
which corresponds to Λ ≲ 105. In the same fashion as the
f- and p1-modes, one can observe that these quantities are
almost independent of the adopted EOSs and we can derive
the universal relations as

fw1
R10 ðkHzÞ ¼ 5.9881þ 2.4830xþ 0.22713x2

− 0.033050x3; ð13Þ

R10=τw1
ð1= secÞ ¼ ð0.72183 − 1.1866xþ 3.3208x2

− 1.3880x3 þ 0.25982x4

− 0.017818x5Þ × 104; ð14Þ

where R10 ≡ R=ð10 kmÞ. In the bottom panes, the corre-
sponding relative deviation of the calculated values from
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between the calculated values and the values predicted with the
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the values predicted from the universal relations are shown.
From this figure, the universal relations as a function of Λ
can reasonably predict the values of fw1

R10 and R10=τw1
,

but their accuracy is more or less similar to that with the
universal relation as a function ofM=R derived in Ref. [36].
Anyway, the detection of w1-mode gravitational waves
must be quite more difficult, due to their high damping rate.

IV. CONCLUSION

In this study, focusing on the feature that the relation
between the neutron star compactness and the dimension-
less tidal deformability hardly depends on the EOSs, we
derive the universal relations predicting the f- and p1-mode
frequencies and the f-mode damping rate multiplied with
the normalized neutron star mass, and the w1-mode
frequency and its damping rate multiplied with the nor-
malized neutron star radius as a function of the dimension-
less tidal deformability. With the universal relations for the
f-mode, one can predict the properties more accurate than
that with the universal relation as a function of compact-
ness, while the universal relations for the p1- and w1-modes
are more or less similar predictability to the previous ones.

With these universal relations derived in this study, one
may discuss the gravitational waves from the neutron stars
in the binary neutron star system, where one has a chance to
know the value of the dimensionless tidal deformability. In
this study, we adopt the EOSs, whose parameters are in a
relatively wide range, but if one adopts only the EOSs
constrained from the astronomical observations and terres-
trial experiments in a more narrow parameter range and
modifies the coefficients in the universal relations, their
predictability may become more accurate. Finally, we
remark that the present work can be helpful for detecting
gravitational waves from quasinormal oscillation modes of
neutron stars, and it will also help improve the tidal
deformability, especially its lower limit.
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