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The ground and excited states properties of Zr isotopes are studied from proton to
neutron drip lines using the relativistic (RMF) and nonrelativistic (SHF) mean-field for-
malisms with Bardeen–Cooper–Schrieffer (BCS) and Bogoliubov pairing, respectively.
The well-known NL3∗ and SLy4 parameter sets are used in the calculations. We have
found spherical ground and low-lying large deformed excited states in most of the iso-
topes. Several couples of Ωπ = 1/2± parity doublets configurations are noticed, while
analyzing the single-particle energy levels of the large deformed configurations.
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1. Introduction

Although nuclear shape coexistence in various mass regions of the periodic table is
well-known, it remains an interesting investigation till today. On the other hand,
the existence of parity doublet is relatively new.1–3 The origin and manifestation of
such an interesting observable is not yet known clearly. It is reported that the parity
doublet is not visible in a nucleus with normal/spherical deformation. However, the
existence of parity doublet is possible for nuclei with highly deformed shape. In
this case, two orbitals with opposite parity lie very close to each other. Since, the
parity doublets only appear in large deformed configuration and not in normal or
spherical shape, its origin may be related to its shape, i.e., with deformed orbitals.
That means, in normal situation, the high-lying partner of the doublet does not
come nearer to the low-lying one but when the nucleus gets deformed, gives rise a
Nilsson like structure in the large deformed state. The shape coexistence, i.e., two
different shapes very close in energy is also rare, but known in nuclear structure

∗Corresponding author.

1550017-1

In
t. 

J.
 M

od
. P

hy
s.

 E
 2

01
5.

24
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 U
N

IV
E

R
SI

T
Y

 O
F 

SI
N

G
A

PO
R

E
 o

n 
10

/1
8/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://dx.doi.org/10.1142/S0218301315500172


2nd Reading

March 13, 2015 15:39 WSPC/S0218-3013 143-IJMPE 1550017

B. Kumar, S. K. Singh & S. K. Patra

physics.4–8 In this case, both the solutions are nearly or completely degenerate
(different configuration with same energy). This phenomenon is mostly visible in
the mass region A = 100 of the periodic table.9 Here, we have chosen Zr nucleus as
a potential candidate both for shape coexistence and study of parity doublets using
the well known relativistic (RMF) and nonrelativistic (SHF) mean-field formalisms.
The NL3∗ and SLy4 parametrization with Bardeen–Cooper–Schrieffer (BCS) and
Bogoliubov pairing prescriptions, respectively used to take care of the pairing for
the open shell nuclei. The paper is organized as follows: In Secs. 2 and 3, we have
given a brief outline about the nonrelativistic Skyrme–Hartree–Fock–Bogoliubov
(SHFB) and relativistic mean-field (RMF) formalisms. Our results are discussed in
Sec. 4. A concluding remark is given in Sec. 5.

2. SHFB Approximation

The energy density functional with SHFB approximation is a powerful theoreti-
cal formalism to deal with finite nuclei starting from both proton to neutron drip
lines.10 In this calculations, we have used the successful SLy4 parameter set11 with
zero-range Bogoliubov pairing interaction for open shell nuclei. The numerical cal-
culations are done using an axially deformed harmonic oscillator (HO) basis state
expansion to solve the Schrödinger equation iteratively. The numerical calculations
are carried out using the code HFBTHO (v1.66p)12 that solve the equation self-
consistently. For Skyrme forces, the Hartree–Fock–Bogoliubov (HFB) energy has
the form of a local energy density functional15–18:

E[ρ, ρ̃] =
∫
d3rH(r), (1)

where Hamiltonian density H:

H(r) = H(r) + H̃(r), (2)

is the sum of the mean-field and pairing energy densities. In the present implemen-
tation, we have used the following explicit forms:

H(r) =
�

2

2m
τ +

1
2
t0

[(
1 +

1
2
x0

)
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(
1
2
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)
ρ

(
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4
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−
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− 1
8

(t1x1 + t2x2)
∑
ij

J2
ij +

1
8

(t1 − t2)
∑
q,ij

J2
q,ij

− 1
2
W0

∑
ijk

εijk

[
ρ∇kJij +

∑
q

ρq∇kJq,ij

]
,

(3)

H̃(r) =
1
2
V0

[
1 − V1

(
ρ

ρ0

)γ] ∑
q

ρ̃2
q. (4)

The index q labels is represents the neutron (q = n) or proton (q = p) densities,
while densities without index q denote the sums of proton and neutron densities.
H(r) and H̃(r) depend on the particle local density ρ(r), pairing local density ρ̃(r),
kinetic energy density τ(r) and spin-current density Jij(r). The number of oscillator
shells Nsh = 20 and basis parameter b0 =

√
b2z + b2⊥ are used in the calculations.

A detail numerical technique is available in Ref. 12 and the notations have their
usual meaning.

2.1. Pairing correlations in SHF formalism

In nonrelativistic SHFB formalism, the pairing correlation is included by Lipkin–
Nogami (LN) prescription.12,13 Here, the LN method has been implemented by
perturbing the SHFB calculation with an additional term h′ = h − 2λ2(1 − 2ρ)
included in the Hartree–Fock (HF) Hamiltonian, where the parameter λ2 is itera-
tively calculated to describe the curvature of the total energy as a function of the
particle number. For an arbitrary two-body interaction V̂ , λ2 can be calculated
from the particle number dispersion according to the following relation12:

λ2 =
〈0|V̂ |4〉〈4|N̂2|0〉
〈0|N̂2|4〉〈4|N̂2|0〉

, (5)

where |0〉 is the quasi-particle vacuum, N̂ is the particle number operator, and
|4〉〈4| is the projection operator onto the four-quasi-particle operator space. The
final expression for the λ2 can be written in the following simple form14:

λ2 =
1
2

TrΓ′ρ(1 − ρ) + Tr∆′(1 − ρ)κ
[Trρ(1 − ρ)]2 − 2Trρ2(1 − ρ)2

, (6)

where κ is the pairing tensor and the potentials are given as

Γ′
αα′ =

∑
ββ′

Vαβα′β′(ρ(1 − ρ))β′β (7)

and

∆′
αβ =

1
2

∑
α′β′

Vαβα′β′(ρκ)α′β′ , (8)

which can be calculated in a full analogy to Γ and ∆ by replacing ρ and κ by ρ(1−ρ)
and ρκ, respectively. In case of the seniority pairing interaction with strength G,
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Eq. (6) can be simplified to

λ2 =
G

4
Tr(1 − ρ)κTrρκ− 2 Tr(1 − ρ)2ρ2

[Tr ρ(1 − ρ)]2 − 2 Trρ2(1 − ρ)2
. (9)

Equation (6) can be well approximated by the seniority pairing expression (9) with
the effective strength (G) and can be written in terms of pairing energy (Epair) and
average pairing gap (∆̄)12:

G = Geff = − ∆̄2

Epair
, (10)

where, Epair = − 1
2Tr∆κ and ∆̄ = Tr∆ρ

Trρ .
The calculation is done using the density-dependent delta pairing force with

the pairing strength V0 = −244.72MeV fm3, and pairing window 60MeV. These
quantities have been fitted to reproduce the neutron pairing gap of 120Sn which is
consistent with Ref. 19. Average pairing gap (∆̄) is obtained from the level density.
Thus, it varies from nucleus to nucleus depending on the density distribution of
nucleons. The results for pairing gaps (�n, �p), effective strength (Gn, Gp) and
pairing energy (Epair) for Zr isotopes are given in Table 1.

3. Theoretical Framework for RMF Model

The RMF model20–25 is largely used in recent years for both finite nuclei and
infinite nuclear matter from normal to supernormal conditions. We have used the
RMF Lagrangian24 with the NL3∗ parameter set,26 which is reasonably useful for
both β-stable and drip lines nuclei. The Lagrangian contains the terms of inter-
action between mesons and nucleons and also self-interaction of isoscalar scalar
sigma meson. The other mesons are isoscalar vector omega and isovector vector rho
mesons. The photon field Aµ is included to take care of the Coulombic interaction of
protons. A definite set of coupled equations are obtained from the Lagrangian which
are solved self-consistently in an axially deformed HO basis with NF = NB = 12,
fermionic and bosonic oscillator quanta. A detail study about choosing the HO
basis is given in Sec. 3.2. The relativistic Lagrangian density for a nucleon–meson
many-body systems is written as

L = ψi{iγµ∂µ −M}ψi +
1
2
∂µσ∂µσ − 1

2
m2

σσ
2 − 1

3
g2σ

3 − 1
4
g3σ

4 − gsψiψiσ

− 1
4
ΩµνΩµν +

1
2
m2

wV
µVµ − gwψiγ

µψiVµ − 1
4
Bµν ·Bµν +

1
2
m2

ρR
µ ·Rµ

− gρψiγ
µτψi · Rµ − 1

4
FµνFµν − eψiγ

µ (1 − τ3i)
2

ψiAµ. (11)

Here, sigma meson field is denoted by σ, omega meson field by Vµ and rho meson
field by Ru and Aµ denotes the electromagnetic field, which couples to the protons.
The Dirac spinors are given by ψ for the nucleons, whose third component of isospin
is denoted by τ3 and gs, g2, g3, gω, gρ are the coupling constants. The center
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of mass (c.m.) motion energy correction is estimated by the HO approximation
Ec.m. = 3

4 (41A−1/3). From the resulting proton and neutron quadrupole moments,
the quadrupole deformation parameter β2 is defined as

Q = Qn +Qp =

√
16π
5

(
3
4π
AR2

0β2

)
, (12)

with R0 = 1.2A1/3 (fm), and the root-mean-square (rms) matter radius are given as

〈r2m〉 =
1
A

∫
ρ(r⊥, z)r2dτ, (13)

where A is the mass number and ρ(r⊥, z) is the deformed density. The total bind-
ing energy (BE) and other observables are also obtained by using the standard
relations.20

3.1. Pairing correlations in RMF formalism

The pairing correlation plays an important role in open shell nuclei to describe
the ground state properties, like BE, charge radius, single-particle energy levels
and deformations. The relativistic Lagrangian contains only terms like ψ†ψ, and
no terms of the form ψ†ψ† at the mean-field level. The inclusion of the pairing
correlation of the form ψψ and two-body interaction ψ†ψ†ψψ in the Lagrangian
violates the particle number conservation.28 We have used the pairing correlation
externally in the RMF model. In our calculation, the constant gap BCS-approach
takes care the pairing correlation for open shell nuclei. The general expression for
pairing energy in terms of occupation probabilities v2

i and u2
i = 1 − v2

i is written
as28,29:

Epair = −G
[∑

i>0

uivi

]2

, (14)

with G = pairing force constant. The variational approach with respect to v2
i gives

the BCS equation29:

2εiuivi −�(u2
i − v2

i ) = 0, (15)

with � = G
∑

i>0 uivi.
The occupation number is defined as

ni = v2
i =

1
2

[
1 − εi − λ√

(εi − λ)2 + �2

]
. (16)

The values � for the nucleons (neutron and proton) is taken from the phenomeno-
logical formulae of Madland and Nix27:

�n =
r

N1/3
exp(−sI − tI2), �p =

r

Z1/3
exp(sI − tI2), (17)

where, I = (N − Z)/A, r = 5.73MeV, s = 0.117 and t = 7.96.
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The chemical potentials λn and λp are determined by the particle numbers for
neutrons and protons. Finally, the pairing energy is computed as

Epair = −�
∑
i>0

uivi. (18)

For a particular value of � and G, the pairing energy Epair diverges, if it is extended
to an infinite configuration space. In fact, in all realistic calculations with finite
range forces, the contribution of states of large momenta above the Fermi surface
(for a particular nucleus) to � decreases with energy. Therefore, we have used a pair-
ing window, where the equations are extended up to the level |εi −λ| ≤ 2(41A−1/3)
as a function of the single-particle energy. The factor two has been determined so
as to reproduce the pairing correlation energy for neutrons in 118Sn using Gogny
force.22,28,30 It is to be noted that recently Karatzikos et al.31 has shown that if
one uses the constant pairing window which is adjusted for one state at particular
deformation then it may lead to errors at different energy solution (different state
solution). However, we have not taken this problem into account in our calculations,
as we have adjusted to reproduce the pairing as a whole for 118Sn nucleus.

3.2. Selection of basis space

After getting the set of coupled mean-field equations for both nucleons and mesons,
we need to solve these equations numerically by expanding the wave functions
(potentials) in the deformed HO basis and solve the equations iteratively. For the
exotic (drip line) nuclei, a large model space is required to get a proper convergence
solution of the system. We have used the HO quanta NF = NB = 12, where NF

for fermionic and NB for bosonic fields. The convergence of the results, like BE,
rms matter radius (rrms) and quadrupole deformation parameter (β2) with the HO
basis are tested and the obtained values are shown in Fig. 1. The convergence test
is done as a function of HO basis for normal and larger deformations (β0 = 0.6).
An increase in basis quanta from 12 to 14, the increment in energy is ∼0.21MeV
which is near the accuracy of the present RMF model. Also, to be noted that a
further increase in the model space, the convergence time increases dramatically.
Thus, an optimum values of NF = NB need to be chosen, and can be seen in Fig. 1
that this values of NF = NB ≥ 12 is a suitable choice.

To study the convergence of the solutions in both RMF (NL3∗) and SHF (SLy4)
formalisms, we have calculated the binding energy and corresponding quadrupole
moment with different basis deformation for the quadrupole moments. It is found
that the calculated quadrupole deformation parameter β2 is independent of the
basis deformation β0. Both the formalisms estimate reasonable results except for
the spherical solution obtained with an basis deformation β0 = 0.03. Due to this odd
behavior of SHF(SLy4) at the spherical solution, we ignore it for further analysis.
We perform the calculations for 82,100,102,104Zr isotopes and the results are given
in Table 3. It is to be noted that from the potential energy surface curve as well
as from the analysis of basis deformation, we get a spherical solution for lighter
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β2

Fig. 1. (Color online) The calculated BE, rms matter radius (rrms) and quadrupole deformation
parameter (β2) with Bosonic and fermionic basis. The minima of the solution obtained with
NF = NB = 8–20 are shown. One can see from the figure that the results are almost similar with
each other for NF = NB = 12 or more showing the stability of the solution for NF = NB = 12.

β2 β2
β2 β2

Fig. 2. (Color online) The potential energy surface for the Zr isotopes for NL3∗ (black line) and
SLy4 (red line) force parameter.
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isotopes of Zr, such as 82–92Zr. However, the zero deformation is not stable for
heavier masses of Zr upto A = 106. Again, beyond A = 108, the solutions with
zero deformation get stabilized with increase in mass number (see Potential Energy
Surface (PES) curve Fig. 2).

4. Calculations and Results

We have used the nonconstraint calculation in both the RMF and SHF formalisms.
For this, first we have put some basis deformation parameter and let the system
go to find out the minimum energy state in local region corresponding to the basis
deformation i.e., β0. Here, we have put the three assumption values for each nucleus
(β0 = 0.001,±0.3). In most of the cases, the obtained quadrupole deformation
parameter β2 of the nucleus may be different from the basis deformation β0. Both
the SHF and RMF formalisms predict satisfactory results for binding energy, rms
radius and quadrupole deformation parameter β2, not only for nuclei in stability
line, but also for drip lines nuclei. In this work, we have analyzed the structure of
proton and neutron-rich Zr nuclei and studied two important phenomena such as
(i) shape coexistence and (ii) parity doublet for some specific Zr isotopes. Also, the
matter radius rm, quadrupole deformation parameter β2 and ground state bind-
ing energy are estimated from proton to neutron driplines. The calculated results
are given in Table 2 and the shape coexistence and parity doublets are shown in
Figs. 3–6.

4.1. PES

Except few isotopes, a large number of nuclei in the mass table are found to be
deformed in their ground state configuration. For the calculation of the ground state
properties one should include the deformation into the formalisms. It may possi-
ble that some nuclei have almost same energy with different shape configurations
(spherical, prolate or oblate). This type of states are known as shape coexistence. To
get the solution with different deformations one should perform the constraint cal-
culation as a function of quadrupole deformation parameter with various constraint
BE (BEc). For constraint calculation, we minimize 〈H ′〉 instead of 〈H〉 which are
related to each other by the following relation32–36:

H ′ = H − λQ, with Q = r2Y20(θ, φ), (19)

where, λ is the Lagrange multiplier which is fixed by the constraint 〈Q〉λ = Q0. In
the present work, we have done the constraint calculation for Zr isotopes for both
the parameter sets (NL3∗ and SLy4) and the obtained results are shown in Fig. 2.
Apart from a few exceptions, in general, we get qualitatively similar results in both
the formalisms. For example, in SHF(SLy4) case, the three minima of 110Zr are
located at β2 = −0.210, 0 and 0.437 respectively. Similar situation can be found for
108,112Zr nuclei. The ground state potential energy surfaces allow us to determine
the equilibrium shapes (the lowest minimum). It is worthy to mention that the
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Table 2. The BE (MeV), quadrupole deformation parameter β2 and basis deformation parameter
β0 for Zr isotopes.

RMF(NL3∗) SHF(SLy4) RMF(NL3∗) SHF(SLy4)

Nucleus BE β2 BE β2 β0 Nucleus BE β2 BE β2 β0

82Zr 691 −0.194 691.8 −0.182 −0.6 102Zr 858.1 −0.208 859.7 −0.216 −0.6
691 −0.192 691.8 −0.178 −0.5 858.1 −0.206 859.7 −0.216 −0.5
690.9 −0.191 691.8 −0.146 −0.4 858 −0.205 859.7 −0.215 −0.4
690.9 −0.191 691.8 −0.164 −0.3 858 −0.206 859.7 −0.215 −0.3
690.8 −0.190 692.2 −0.117 −0.2 858 −0.206 859.7 −0.215 −0.2
691.7 0 692.5 −0.103 −0.1 858 −0.207 859.7 −0.215 −0.1
691.7 0 694.4 0 0.03 858.2 0.419 857.3 0 0.0.3
691.7 0 690 0.461 0.1 858.3 0.426 860.5 0.429 0.1
691.7 0 690 0.477 0.2 858.3 0.429 860.5 0.428 0.2
689.4 0.493 690 0.493 0.3 858.2 0.429 860.6 0.428 0.3
689.4 0.481 690 0.496 0.4 858.2 0.429 860.6 0.428 0.4
689.4 0.473 690 0.484 0.5 858.3 0.430 860.5 0.429 0.5
689.6 0.480 690.4 0.430 0.6 858.1 0.428 860.5 0.429 0.6

100Zr 846.9 −0.218 849.4 −0.212 −0.6 104Zr 868.7 −0.208 869.6 −0.220 −0.6
846.9 −0.217 849.4 −0.211 −0.5 868.7 −0.206 869.6 −0.219 −0.5
846.9 −0.216 849.4 −0.211 −0.4 868.7 −0.206 869.6 −0.219 −0.4
846.9 −0.217 849.4 −0.210 −0.3 868.7 −0.207 869.6 −0.219 −0.3
846.8 −0.218 849.4 −0.210 −0.2 868.6 −0.207 869.7 −0.219 −0.2
846.8 −0.218 849.5 −0.210 −0.1 868.6 −0.208 869.7 −0.219 −0.1
847.6 0.423 847.5 0 0.03 865.2 0 866.8 0 0.03
847.7 0.440 849.7 0.423 0.1 865.1 0.035 870.3 0.430 0.1
847.7 0.449 849.7 0.422 0.2 868 0.424 870.3 0.430 0.2

847.7 0.445 849.7 0.421 0.3 868 0.424 870.3 0.430 0.3
847.6 0.440 849.7 0.422 0.4 867.9 0.424 870.3 0.430 0.4
847.6 0.436 849.7 0.423 0.5 867.9 0.423 870.3 0.430 0.5
847.6 0.433 849.6 0.422 0.6 867.9 0.424 870.2 0.430 0.6

Table 3. The pairing gap, effective strength and pairing energy for Zr isotopes.

RMF(NL3∗) SHF(SLy4)

Nucleus �n �p Epair Gn Gp �n �p Epair

80Zr 1.673 1.673 18.995 −0.162 −0.158 0.158 0.143 4.578
82Zr 1.633 1.669 19.078 −0.149 −0.157 0.217 0.142 5.911
94Zr 1.242 1.422 15.188 −0.126 −0.145 0.169 0.124 4.485
96Zr 1.170 1.361 13.882 −0.125 −0.144 0.183 0.118 4.889
98Zr 1.100 1.300 11.999 −0.125 −0.141 0.194 0.135 5.44
100Zr 1.031 1.238 11.411 −0.121 −0.140 0.222 0.133 6.156
102Zr 0.966 1.176 10.767 −0.118 −0.138 0.251 0.131 6.695
104Zr 0.903 1.115 9.886 −0.116 −0.134 0.163 0.103 4.183
106Zr 0.844 1.056 8.840 −0.114 −0.133 0.158 0.095 3.948
108Zr 0.787 0.999 7.741 −0.112 −0.132 0.139 0.091 3.517
110Zr 0.735 0.944 6.971 −0.109 −0.133 0.143 0.084 3.468
112Zr 0.685 0.892 6.959 −0.106 −0.132 0.124 0.082 3.058
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∆Β
.Ε

.

Fig. 3. (Color online) The ground state BE difference from first and second intrinsic excited
states for Zr isotopes. The zero reference point shown by the dashed horizontal line.

β

(a) (b)

(c) (d)

Fig. 4. (Color online) Some selected single-particle energy level evolution with deformation
parameter β2 for relativistic model by using NL3∗ parameter set. (a) 1/2+− Single-particle levels
for the neutron, (b) 1/2+− Single-particle levels for proton, (c) 3/2+− Single-particle levels for
neutron, and (d) 3/2+− Single-particle levels for proton. The positive parity (+) level is given by
dotted line and negative parity levels (−) level is given by solid line.
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ε ι

β2 = 0.000β2 = 0.000 β2 = 0.480β2 = 0.500

Fig. 5. (Color online) Single-particle levels for 80Zr in normal and large deformed states. The
single-particle levels are denoted by the Nilsson indices [N, nz ,Λ]Ωπ.

β2 = −0.210 β2 = 0.421 β2 = −0.217 β2 = 0.445

ε ι

Fig. 6. (Color online) Single-particle levels for 100Zr isotopes in oblate and large deformed states.
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minima near zero is not well developed, and may be considered as an isomeric
state. Thus, we get three solutions in such nuclei consistent with the earlier report
of Schunck et al.37 In addition to this, we also notice shallow regions in the PES
with several flat minima for 96,98,100,102Zr. This fluctuation may be due to the
use of mean-field models and one needs a theory beyond mean-field to over come
such fluctuations. For example, the generator coordinate method or random phase
approximation could be some improved formalisms to take care of such effects.

4.2. BE and shape coexistence

The nuclear BE is a physical quantity, which is precisely measured experimentally
and it is responsible for nuclear stability and structure of nuclei. The maximum
BE corresponds to the ground state and all other solutions are intrinsic excited
states of a nucleus. These are not necessarily the lowest excitations, there could
be rotational excitations below their first excited state, which is beyond the scope
of our present calculations and needs further analysis. The BE for Zr isotopes
obtained by SHF(SLy4) and RMF(NL3∗) calculations are depicted in Table 2 and
the results compared with experimental data,38–40 wherever available. From the
ground and excited intrinsic states BEs, we have measured their difference �BE =
BE(gs)−BE(es) and examined the shape coexistence phenomena. When we find a
small value of �BE, then we termed it as a case of shape coexistence (degenerate
solutions with different quadrupole deformations). For shape coexistence, there is
a good possibility of the nucleus being in either shapes.

The BE difference between the ground and first and second intrinsic excited
states are shown in Fig. 3 for Zr isotopes. The solid line is the zero reference label,
which marks the shape coexistence line. The points which are on the line designated
as perfectly shape coexistent nuclei. The shape coexistence in A = 80 mass region
of nuclei using RMF formalism have been reported in Refs. 4, 28 and 41. Here, it
is shown that the neutron-deficient nuclei in this mass region possess spherical and
large deformed structures. In the present work, we would like to show that not only
the neutron-deficient Zr isotopes have shape coexistence, but also other normal and
neutron-rich Zr isotopes have low-lying large deformed configuration including the
normal/spherical shape. Sometimes it so happens that the large deformed solution
becomes the ground state (98Zr, β2 = 0.497 in RMF) as shown in the Table 2. The
nuclei with shape coexistence shows the transition between the spherical to oblate
and again from oblate to prolate due to minimum energy barrier between the shape
coexistence states. There are some isotopes, i.e., 108Zr (in RMF) and 110,112Zr (in
SHF), which have ∆BE ≤ 1MeV for both cases like first and second intrinsic excited
states. This type of shape coexistence is called triple shape coexistence.9 If we see
the ∆BE for 108Zr in Fig. 3, its excited state has almost same energy with its ground
state, leading to the phenomenon of shape coexistence. These type of nuclei show the
shape coexistence in their excited state and performed the shape change/fluctuation
in application of a small energy (≤ 1MeV). The shape coexistence is very important
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in the reaction study, because surface density distribution plays a crucial role in
the cross-section and it will change by applying small perturbation in energy. Some
isotopes of Zr have been predicted to be triaxial (γ �= 0)42 in shape, which is one
more degree of freedom in shape orientation. The study of this phenomenon is
beyond the scope of this work, as we have used the axially symmetric formalism
for the deformed nuclei.

In the present work, we have compared both results of SLy4 and NL3∗ with the
experimental data in Table 2. Analyzing Fig. 3 and the BE results of Table 2, it
is clear that the prediction of RMF(NL3) and SHF(SLy4) are qualitatively almost
similar. Again, comparing the results with experimental data, the SLy4 parameter
set reproduce the data similar or even better than NL3∗ set of the RMF formalism.
In general, both the SHF and RMF have tremendous predictive power upto an
acceptable extend of accuracy and the results can be used to most part of the mass
Table. Also, it is worthy to mention that all models have some limitations and there
are every possibilities for their improvements.

4.3. Evolution of single-particle energy with deformation

In this section, we have calculated the single-particle energy of some selected Nilsson
orbits with different values of deformation parameter β2 by the constraint calcula-
tion. The results are given in Fig. 4, where positive parity orbits shown by dotted
and negative parity by solid lines for 100Zr isotope. The single-particle energy for
neutron is given in Fig. 4(a) and proton single-particle energy in Fig. 4(b). The lower
level like 1

2

+[000] is very less affected by the variation of the deformation in both
neutron and proton cases as shown in Figs. 4(a) and 4(b). But as we increase the
energy of the levels, variation of single-particle energy also increases with the defor-
mation parameter as shown in figure. We have plotted similar curve for 3

2

± orbits
for the same nucleus 100Zr and the results obtained are given in Figs. 4(c) and 4(d)
for neutron and proton, respectively. The evolution of single-particle energy levels
with deformation parameters is of similar nature as 1

2

± orbits. We repeat the calcu-
lation in nonrelativistic SHF model and obtained almost similar trend of levels, so
we are not presenting the SHF results. The single-particle energies evolved with the
deformation parameter and opposite parity orbits come closer with deformation.
A detailed study is done in the following section, where we will discuss about the
parity doublets in the orbits at large deformation.

4.4. Large deformed configuration and parity doublet

The parity doublet is an interesting configuration for the large deformed state of
a nucleus. Recently, it has been reported by Singh et al.1 and they have shown
that there exist a parity doublet in the large deformed configuration for light mass
nuclei. In the present calculations, we have extended the investigation to relatively
heavier mass region of the periodic chart. In this case, we have focused our study on
Zr isotopes, where shape coexistence is an usual phenomenon. In most of the cases
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of Zr isotopes, we get a spherical or a normal deformed solution along with a large
deformed state both in the RMF(NL3∗) and SHF(SLy4) calculations. The evolution
of single-particle energy with deformation parameter β2 for some selected nuclei
are depicted in Figs. 5 and 6. The parity doublets are marked by their asymptotic
quantum number [N,nz ,Λ], where N is principle quantum number, nz is number
of nodes of the wave function in the z-direction (the number of times the radial
wave function crosses zero). Larger nz values corresponds to wave function more
extended in the z-direction which means lower energy orbits, Λ is the projection of
the orbital angular momentum on to the z-axis. As in light mass nuclei,1 in case of
Zr isotopes also, the deformation-driving Ωπ = 1

2

− orbits come down in energy in
large deformed solutions from the shell above, in contrast to the normal deformed
solutions. For each nucleus, we have compared the normal/spherical deformed and
the large deformed configurations single-particle energy orbits and analyzed the
parity doublets states and some of them are given in this work. The occurrence
of approximate 1

2

+, 1
2

− parity doublets (degeneracy of Ωπ = 1
2

+, 1
2

− states) for
the large deformed solutions are clearly seen in Figs. 5 and 6, where excited large
deformed configurations for 80Zr and 100Zr are given. As shown in Fig. 5, the
single-particle levels for spherical shape for opposite parity are well-separated from
each other, but become closer with deformation suggesting parity doublets in the
system. For example, in the case of 80Zr, if we have plotted the single-particle energy
levels for neutron, then the energy levels [310]12

− and [440]12
+ are far from each

other (∼18.28MeV in RMF), but becomes almost degenerate (∼1.28MeV) at large-
deformation (β2 = 0.480). Same behavior we have found in the single-particle orbits
[440]12

+ and [310]12
− of proton intrinsic single particles, i.e., in normal deformation,

these two levels are separated from each other by 16.8MeV, but in large deformed
case (β2 = 0.480), it becomes closer (∼0.5MeV). Qualitatively, the same behavior
appears in the SHF(SLy4) results also (left panel of the Figs. 5 and 6). In Fig. 6,
for 100Zr we have given the large deformed orbits for prolate and oblate cases both
for RMF(NL3∗) and SHF(SLy4) models. Here also, we get the parity doublet in
oblate and prolate shapes, which implies that parity doublets are driving by the
deformation and it will occur at the large deformation. Some parity doublet orbits
are shown by Nilsson representation [N,nz,Λ] in Fig. 6. On close inspection of
Fig. 6, then in the oblate level of neutron, we get several parity doublets like ([411]
[330]), ([440] [510]) and for proton ([330] [411]). For prolate case, the neutron parity
doublet orbits ([530] [400]), ([550] [420]), ([301] [431]), ([310] [440]) etc., similarly
for the proton case.

5. Summary and Conclusions

We have calculated the ground and low-lying excited state properties, like BE
and quadrupole deformation parameter β2 using RMF(NL3∗) and SHF(SLy4) for-
malisms for Zr isotopes near the drip line regions. In general, both the RMF and
SHF models have predicted very good results throughout the isotropic chain. We
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get the double and triple shape coexistence from our analysis in some Zr isotopes,
which is consistent with the earlier data. The present prediction of parity doublet
may be a challenge for the experimentalist to look for such configuration states. In
general, we find large deformed solutions for the neutron-drip nuclei, which agree
with the experimental measurements. In the calculations, a large number of low-
lying intrinsic large deformed excited states are predicted in many of the isotopes,
which shows the parity doublet near the Fermi levels. The parity doublet levels are
nearly degenerate in excited states which can make two bands of different parity
promoting two particles from reference frame to these degenerate opposite parity
levels. It may solve the problem of existence of the twin bands and quantization of
alignments of shapes. This analysis will help us to understand the intrinsic excited
states of the Zr and other similar isotopes. In this respect, some more calculations
are required to build a general idea about the omega parity doublets.
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