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We study the effects of isovector-scalar (δ)-meson on neutron and hyperon stars. Influ-
ence of δ-meson on both static and rotating stars is discussed. The δ-meson in a neutron
star consisting of protons, neutrons and electrons, makes the equations of states (EOS)
stiffer at higher density, and consequently increases the maximum mass of the star. But
induction of δ-meson in the hyperon star decreases the maximum mass. This is due to
the early evolution of hyperons in presence of δ-meson.
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1. Introduction

Neutron star is a venerable candidate to discuss the physics at high density. We
cannot create such a high density in a terrestrial laboratory, so a neutron star is
the only object, which can provide much information on high-density nature of
the matter.1,2 But it is not an easy task to deal with the neutron star owing to
its complex nature, as all the four fundamental forces (strong, weak, gravitational
and electromagnetic) are active. High gravitational field makes it mandatory to use
general theory of relativity for the study of neutron star structure. Equations of
states (EOS) are the sole ingredient that must be supplied to the equation of stel-
lar structure, Tolman–Oppenheimer–Volkoff (TOV) equation, whose output is the
mass–radius profile of the dense neutron star. In this case, the nuclear EOS plays
an intimate role in deciding the mass–radius of a neutron star. Its indispensable
importance attracts the attention of physicists to have an anatomy of the inter-
actions Lagrangian. As the name suggests, a neutron star is not completely made
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up neutrons, a small fraction of protons and electrons are also present, which is
the consequence of the β-equilibrium and charge neutrality condition.3 Also, the
presence of exotic degrees of freedom like hyperons and kaons cannot be ignored in
such high dense matter. It is one of the most asymmetric and dense nuclear objects
in nature.

From last three decades,4,5 the relativistic mean field (RMF) approximation,
generalized by Walecka6 and later on developed by Boguta and Bodmer7 is one of
the most reliable theories to deal with the infinite nuclear matter and finite nuclei.
The original RMF formalism starts with an effective Lagrangian, whose degrees
of freedom are nucleons, σ-, ω-, ρ- and π-mesons. To reproduce proper experi-
mental observable, it is extended to the self-interaction of σ-meson. Recently, all
other self- and crossed interactions including the baryon octet are also introduced
keeping in view the extra-ordinary condition of the system, such as highly asym-
metric system or extremely high-density medium.8 Since the RMF formalism is
an effective nucleon–meson model, the coupling constants for both nucleon–meson
and hyperon–meson are fitted to reproduce the properties of selected nuclei and
infinite nuclear matter properties.6,7,9,10 In this case, it is improper to use the
parameters obtained from the free nucleon–nucleon scattering data. The parame-
ters, with proper relativistic kinematics along with the mesons and their properties,
are already known or fixed from the properties of a small number of finite nuclei, the
method gives excellent results not only for spherical nuclei, but also for well-known
deformed cases. The same force parametrization can be used both for β-stable and
β-unstable nuclei throughout the periodic table.11–14

The importance of the self- and crossed-interactions are significant for some
specific properties of nuclei/nuclear-matter in certain conditions. For example, self-
interaction of σ-meson takes care of the reduction of nuclear matter incompressibil-
ity K∞ from an unacceptable high value of K∞ ∼ 600MeV to a reasonable number
of ∼270MeV,7,15 while the self-interaction of vector meson ω softens the EOS.14,16

Thus, it is imperative to include all the mesons and their possible interactions with
nucleons and hyperons, self- and crossed terms in the effective Lagrangian den-
sity. However, it is not necessary to do so because of the symmetry reason and
their heavy masses.17 For example, to keep the spin-isospin and parity symmetry
in the ground state, the contribution of π-meson is ignored18 and also the effect of
heavier mesons is neglected for their negligible contribution. Taking into this argu-
ment, in many versions of the RMF formalism, the inclusion of isovector-scalar (δ)
meson is neglected due to its small contribution. But recently it is seen19–24 that
the endowment of the δ-meson goes on increasing with density and asymmetry of
the nuclear system. Thus, it will be impossible for us to justify the abandoning
of δ-meson both conceptually and practically, while considering the high asym-
metry and dense nuclear systems, like the neutron star and relativistic heavy ion
collision. Recent observation of neutron star-like PSR J1614-2230 with mass of
(1.97 ± 0.04)M�25 and the PSR J0348+0432 with mass of (2.01 ± 0.04)M�26 re-
open the challenge in the dense matter physics. The heavy mass of PSR J0348+0432
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(M = 2.01 ± 0.04M�) forces the nuclear theorists to re-think the composition and
interaction inside the neutron star. Therefore, it is important to establish the effects
of the δ-meson and all possible interactions of other mesons for such compact and
asymmetry system.

The paper is organized as follows. In Sec. 2, we have outlined a brief theo-
retical formalism. The necessary steps of the RMF model and the inclusion of
δ-meson are explained. The results and discussions are discussed in Sec. 3. Here, we
have attempted to explain the effects of δ-meson on the nuclear matter system-like
hyperon and proton–neutron stars. This analysis is done for both static and rotating
neutron and neutron–hyperon stars. In these calculations, the E-RMF Lagrangian
(G2 parameter set) is used to take care of all possible self- and crossed interac-
tions.27 On top of the G2 Lagrangian, the δ-meson interaction is added to take care
of the isovector channel. The concluding remarks are given in Sec. 4.

2. Theoretical Formalism

From last one decade, a lot of work has been done to emphasize the role of δ-meson
on both finite and infinite nuclear matter.28–31 It is seen that the contribution of
δ-meson to the symmetry energy is negative.32 To fix the symmetry energy around
the empirical value (∼30MeV), we need a large coupling constant of the ρ-meson
(gρ) value in the absence of the gδ. The proton and neutron effective masses split
due to inclusion of δ-meson and consequently it affects the transport properties of
neutron star.19 The addition of δ-meson not only modifies the property of infinite
nuclear matter, but also enhances the spin-orbit splitting in the finite nuclei.28 A
lot of mystery is present in the effects of δ-meson till date. The motivation of the
present paper is to study such information. It is to be noted that both the ρ- and
δ-mesons correspond to the isospin asymmetry, and a careful precaution is essential
while fixing the δ-meson coupling in the interaction.

The effective field theory and naturalness of the parameter are described in
Refs. 27, 33–36. The Lagrangian is consistent with underlying symmetries of
the QCD. The G2 parameter is motivated by E-RMF theory. The terms of the
Lagrangian are taken into account up to fourth-order in meson–baryon coupling.
For the study of isovector channel, we have introduced the isovector-scalar δ-meson.
The baryon–meson interaction is given by8

L =
∑
B

ψB(iγµDµ −mB + gσBσ + gδBδ.τ)ψB +
1
2
∂µσ∂µσ

−m2
σσ

2

(
1
2

+
κ3

3!
gσσ

mB
+
κ4

4!
g2

σσ
2

m2
B

)
− 1

4
ΩµνΩµν +

1
2
m2

ωωµω
µ

×
(

1 + η1
gσσ

mB
+
η2
2
g2

σσ
2

m2
B

)
− 1

4
Ra

µνR
µνa +

1
2
m2

ρρ
a
µρ

aµ

(
1 + ηρ

gσσ

mB

)

+
1
2
∂µδ.∂µδ −m2

δδ
2 +

1
4!
ζ0(gωωµω

µ)2 +
∑

l

ψl(iγ
µ∂µ −ml)ψl. (1)
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The co-variant derivative Dµ is defined as:

Dµ = ∂µ + igωωµ + igρI3τ
aρa

µ, (2)

where Ra
µν and Ωµν are field tensors and defined as follows:

Ra
µν = ∂µρ

a
ν − ∂νρ

a
µ + gρεabcρ

b
µρ

c
ν , (3)

Ωµν = ∂µων − ∂νωµ. (4)

Here, σ, ω, ρ and δ are the sigma, omega, rho and delta meson fields, respectively,
and in real calculation, we ignore the non-Abelian term from the ρ-field. All symbols
are carrying their own usual meaning.8,21

The Lagrangian equation for different mesons is given by8

m2
σ

(
σ0 +

gσκ3σ0

2mB
+
κ4g

2
σσ

2
0

6m2
B

)
σ0 − 1

2
m2

ρηρ
gσρ

2
03

mB

− 1
2
m2

ω

(
η1

gσ

mB
+ η2

g2
σσ0

m2
B

)
ω2

0 =
∑

gσρ
s
B, (5)

m2
ω

(
1 + η1

gσσ0

mB
+
η2
2
g2

σσ
2
0

m2
B

)
ω0 +

1
6
ζ0g

2
ωω

3
0 =

∑
gωρB, (6)

m2
ρ

(
1 + ηρ

gσσ0

mB

)
=

1
2

∑
gρρB3, (7)

m2
δδ

3 = g2
δρ

s
3B (8)

with ρs
3B = ρs

p − ρs
n, ρs

p and ρs
n are scalar densities for the proton and neutron,

respectively. The total scalar density is expressed as the sum of the proton and
neutron densities ρs

B = ρs
p + ρs

n, which is given by

ρs
i =

2
(2π)3

∫ ki

0

M∗
i d

3k

E∗
i

, i = p, n (9)

and the vector (baryon) density

ρB =
2

(2π)3

∫ ki

0

d3k, (10)

where E∗
i = (k2

i +M∗2
i )1/2 is the effective energy, ki is the Fermi momentum of the

baryons. M∗
p and M∗

n are the proton and neutron effective masses written as

M∗
p = Mp − gσσ0 − gδδ

3, (11)

M∗
n = Mn − gσσ0 + gδδ

3, (12)

which are solved self-consistently. I3 is the third component of isospin projection
and B stands for baryon octet. The energy and pressure density depend on the
effective mass M∗

B of the system, which is first needed to solve these self-consistent
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equations and obtain the fields for mesons. Using the Einstein’s energy–momentum
tensor, the total energy and pressure density are given as8

E =
∑
B

2
(2π)3

∫ kB

0

d3kE∗
B(k) +

1
8
ζ0g

2
ωω

4
0 +m2

σσ
2
0

(
1
2

+
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3!
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+
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4!
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2
0

m2
B

)

+
1
2
m2

ωω
2
0

(
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+
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2
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σσ
2
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m2
B

)
+

1
2
m2

ρρ
2
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(
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)

+
1
2
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δ

g2
δ
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∑

l

εl, (13)

and

P =
∑
B

2
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1
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4
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B

)

+
1
2
m2

ωω
2
0

(
1 + η1

gσσ0

mB
+
η2
2
g2

σσ
2
0

m2
B

)
+

1
2
m2

ρρ
2
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(
1 + ηρ

gσσ0

mB

)

− 1
2
m2

δ

g2
δ

(δ3)2 +
∑

l

Pl, (14)

where Pl and εl are lepton’s pressure and energy density, respectively.

3. Results and Discussions

Before going to the discussions of our results, we give a brief description of the
parameter fitting procedure for gρ and gδ. As it is commonly known, the symmetric
energy, Es, is an important quantity to select the EOS. This value of Es determines
the structure of both static and rotating neutron stars. On the other hand, an
arbitrary combination of gρ and gδ with a fixed value of Es can affect the ground
state properties of finite nuclei. Thus, to have a clear picture on the effect of gδ on
hyperon star structure, we have chosen two different prescriptions for the selection
of gδ in our present calculations. (1) In the first method, we have constructed
various sets of gρ and gδ keeping Es fixed. Here, all the other parameters of G2 set
remain unchanged. The G2 set and the combination of gρ and gδ are displayed in
Table 1. (2) In the second procedure, we have chosen the gρ, gδ pairs keeping the
binding energy constant (experimental binding energy) for finite nuclei. The values
of these gρ and gδ are given in Table 1 with other properties of infinite nuclear
matter. It is worthy to re-emphasize here that we are not looking for a full-fledged
parameter set including the δ-meson coupling, but our aim in this paper is to study
the effects of δ-meson coupling on hyperon star and the production of baryon octet.
Therefore, after splitting the gρ coupling constant into two parts (gρ, gδ) using the
first prescription, the results on hyperon star along with the neutron star structures
both for static and rotating cases under β-equilibrium condition are discussed in
the subsequent Secs. 3.2–3.6. In Sec. 4, we follow the second procedure to get the
(gρ, gδ) pairs and applied these to some selective cases.
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3.1. Parametrization of gρ and gδ with constant symmetry energy

It is important to fix gδ value to see the effects of the δ-meson. The isovector
channels in RMF theory come to exist through both the ρ- and δ-mesons cou-
plings. While considering the effects of the δ-meson, we have to take the ρ-meson
into account. Since both the isovector channels are related to isospin, one cannot
optimize the gδ coupling independently. Here, we have followed a more reliable pro-
cedure by fixing the symmetry energy Esym by simultaneously adjusting different
values of gρ and gδ.19 In general, for most of the nonrelativistic formalism, the sym-
metry energy Esym is around 30–33MeV. However, in some specific parametriza-
tion like GS4, Esym = 12.83MeV and for PRC45 set it is 51.01MeV.65,66 On the
other hand, in nonlinear, density-dependent and point-coupling RMF forces, the
Esym varies from 26.1Mev to 44.0MeV. Here, we have used the well-known G2
parametrization, which has a moderate symmetry energy Esym = 36.4MeV. It is
to be noted that the symmetry energy plays a crucial role both in finite nuclei
and in the EOS, which include the neutron distribution radius in the nucleus and
the mass and radius of a neutron star, respectively. For a smaller value of Esym,
both the relativistic and nonrelativistic forces predict a smaller neutron star mass
contrary to the recent observation of about 2M�. A detailed variation of symmetry
energies for Skyrme effective interaction and nonlinear RMF formalism is available
in Refs. 65 and 66. Recently, a large number of papers have been devoted to Esym

for a definite value, but this is under active discussions.

0 1 2 3 4 5 6 7
9

10

11

12

13

14

15

Nuclear Matter
Neutron Matter

gδ

g ρ

Fig. 1. Variation of gρ and gδ at a constant value of symmetry energy Esym = 36.4MeV for both
nuclear and neutron matter.
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As it is mentioned earlier, we have added gδ on top of the G2 parameter set.
Thus, the symmetry energy of G2 parameter Esym = 36.4MeV is kept constant
at the time of re-shuffling gρ and gδ. It is to be noted that we do not want to change
the value of Esym of the original G2 parameter set with the addition of δ-meson.
The G2 parameters and the gδ and gδ combinations are displayed in Table 1. The
nuclear matter properties are also listed in the table (middle panel). For a particular
value of Esym = 36.4MeV, the variations of gρ and gδ are plotted in Fig. 1. From
Fig. 1, it is clear that as the gδ increases the gρ value also increases, almost linearly,
to fix the symmetry energy unchanged. This implies that ρ- and δ-mesons have
opposite effect on Esym contribution, i.e., the δ-meson has negative contribution of
the symmetry energy contrary to the positive contribution of ρ-meson.

We feel that it is instructive to check the finite nuclear properties with these
combinations of gρ and gδ. We have tabulated the binding energy and charge radius
of some spherical nucleus in Table 2. From the table, it is clear that binding energy
for asymmetric nucleus goes on decreasing with increasing δ-meson and decreasing
ρ-meson couplings. However, it is well understood that the scalar δ-meson gives a
positive contribution to the binding energy. Thus, the binding energy of asymmetric
nuclei should go on increasing with gδ contrary to the observation seen in Table 2.
This happens because of the simultaneous change of (gρ, gδ) pair to keep the con-
stant symmetry energy, i.e., gρ is decreasing and gδ is increasing. As a result, the
contribution of ρ-meson, which is negative to the binding energy dominates over
the δ-meson effect on binding energy. But in the case of symmetric nucleus, like
16O etc., the effects of both ρ- and δ-mesons are absent due to iso-spin symme-
try. A further inspection of Table 2 reveals a slight change in binding energy and
charge radius even for symmetric nuclei because of the slight different in density
distribution of protons and neutrons, although it is small.

3.2. Fields of σ, ω, ρ and δ mesons

The fields of the meson play a crucial role to construct the nuclear potential, which
is the deciding factor for all type of calculations in the RMF model. In Fig. 2, we
have plotted various meson fields included in the present calculations, such as σ,
ω, ρ and δ with gδ on top of G2 parameter set (G2 + gδ). It is obvious that Vσ and
Vω are opposite to each other, which is also reflected in the figure. This means the
positive value of Vω gives a strong repulsion, which is compensated by the strongly
attractive potential of the σ-meson field Vσ. The nature of the curves for Vσ and
Vω is almost similar except the sign. The magnitude of Vσ and Vω looks almost
equal. However, in real (it is not clearly visible in the curve, because of the scale),
the value of Vσ is slightly larger than Vω, which keeps the overall nuclear potential
strongly attractive. The attractive Vσ and repulsive Vω potentials combinely give
the saturation properties of the nuclear force. It is worthy to mention that the
contributions of self-interaction terms are taken care both in Vσ and Vω, which
are the key quantities to solve the Coester band problem39 and the explanation
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Table 3. Mass and radius of the neutron star are calculated at different values of gρ and gδ

keeping binding energy of 208Pb (1633.296 MeV) constant. The calculated results of Esym,
Lsym and Ksym are for nuclear matter at different combinations of (gρ, gδ) pairs.

(gρ, gδ)
M

M�
Radius (km) Esym (MeV) Lsym (MeV) Ksym (MeV)

(9.510, 0.0) 1.980 11.230 36.4 101.0 −7.58
(9.588, 1.746) 1.993 11.246 35.3 98.3 −0.60
(9.896, 3.543) 1.997 11.262 31.7 90.2 20.90
(10.518, 5.742) 2.004 11.294 23.8 72.5 67.07
(11.774, 8.834) 2.018 11.510 6.35 30.6 169.03

of quark–gluon-plasma (QGP) formation within the RMF formalism.40 The self-
interaction of the σ-meson gives a repulsive force at long range part of the nuclear
potential, which is equivalent to the three-body interaction and responsible for
the saturation properties of nuclear force. The calculated results of Vσ and Vω are
compared with the results obtained from DBHF theory with Bonn-A potential38

and NL313 force.
Figure 2 clearly shows that in the low density region (density ρB ∼ 2ρ0), both

RMF and DBHF theories well matched. But as it increases beyond density ρB ∼ 2ρ0

(ρ0 is the nuclear saturation density), both the calculations deviate from each other.
The possible reason may be the fitting procedure of parameters in Bonn-A potential

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-800
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V
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ρΒ(fm
-3

)

Fig. 2. (Color online) Various meson fields are obtained from the RMF theory with G2+ gδ and
NL3 parameter sets. The σ-meson field Vσ and ω-meson field Vω from G2 + gδ calculations are
compared with the results of DBHF theory38 and NL3 set.
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is up to 2–3 times of saturation density ρ0, beyond that the DBHF data are simple
extrapolation of the DBHF theory. Again, the Vω and Vσ fields of NL3 are very
different from G2 + δ results. The Vω for NL3 follows a linear path contrary to
the results of G2 + δ and Bonn-A. This could be due to the absence of self- and
crossed-couplings in NL3 set. The contribution of both ρ- and δ- mesons correspond
to the isovector channel. The δ-meson gives different effective masses for proton
and neutron because of their opposite isospin of the third component. The nuclear
potential generated by the ρ- and δ-mesons are also shown in Fig. 2. We noticed
that their contributions are small, but nonnegligible. These nonzero values of Vρ

and Vδ to the nuclear potential have a significant consequence, mostly in compact
dense object like neutron or hyperon stars, which will be discussed later in this
paper.

3.3. Energy per particle and pressure density

The energy and pressure densities as a function of baryonic density ρB are known
as EOS. These quantities are the key ingredients to describe the structure of neu-
tron/hyperon stars. To see the sensitivity of the EOS, we have plotted energy per
particle (E/ρB−M) as a function of density for pure neutron matter in Fig. 3. Each
curve corresponds to a particular combination of gδ and gρ (taken from Table 1),
which reproduces the symmetry energy Esym = 36.4MeV without destabilizing
other parameters of G2 set. The green line represents for gδ = 0, i.e., with pure G2
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Fig. 3. (Color online) Variation of binding energy per particle with density at various gρ and gδ.
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parameter set. Both the binding energy per particle as well as the pressure density
increase with the value of gδ. This process continues till the value of gδ reaches,
at which E/ρB − M equals the nuclear matter binding energy per particle. An
unphysical situation arises beyond this value of gδ because the binding energy of
the neutron matter will be greater than E/ρB −M for the symmetric nuclear mat-
ter. In the case of G2+ δ parametrization, this limiting value of gδ reaches gδ = 0.7
after which we do not get a convergence solution in our calculations.

In Fig. 4, we have plotted the variation of energy and pressure densities as a
function of ρB/ρ0 for different combinations of gρ and gδ. The enlarged version of
energy density in the sub-saturation region is shown in panel (c) of the figure. Sim-
ilar to other parameter sets of RMF formalism, the G2 + δ set also deviates from
the experimental data. It is to be recalled here that special attention is needed
to construct nucleon–nucleon interaction to fit the data at sub-saturation density.
For example, the potentials of Friedman and Pandharipande,41 Baldo–Maieron,42

DDHF43 and AFDMC44 are designed to fit the data in this region. The three-body
effect also cannot be ignored in this sub-saturation region of the density.45 Although
the nonlinear interactions fulfilled this demand to some extent,39,40,46 like Coester
band problem,47 still some further modification of the couplings are needed. In this
regard, the RMF calculations with density dependent meson–nucleon coupling48

and constraining the RMF models of the nuclear matter EOS at low densities49

are some of the attempts. The mean field approximation is also a major limitation
in the region of sub-saturation density. This is because the assumption of classical
meson field is not a proper approximation in this region to reproduce precisely the
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Fig. 4. (Color online) Variation of energy per particle (panel (a)) and pressure density (panel
(b)) with ρB/ρ0 at different values of gρ and gδ. The enlarged version of energy per particle for
sub-saturation region is in panel (c). The results of other theoretical models like Baldo–Maieron,42

DDHF,43 Firedman41 and AFDMC44 are also given for comparison.
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data. In higher density region, most of the RMF forces reproduce the experimental
data quite well and the predictive power of these forces for finite nuclei is in excel-
lent agreement both for β-stable and β-unstable nuclei. The energy and pressure
densities with G2 set reproduce the experimental data satisfactorily.50 The varia-
tion of pressure density as a function of ρB is shown in panel (b) of Fig. 4, which
passes inside the stiff flow data at higher density.51 Also, the δ-meson coupling
has significant effect in supersaturation density than the sub-saturation region. All
the EOS with different gρ and gδ remain inside the stiff flow data (Fig. 4(b)). In
the present investigation, we are more concerned about highly dense neutron and
hyperon stars, which are considered to be super-saturated nuclear objects.

3.4. Stellar properties of static and rotating neutron stars

The β-equilibrium and charge neutrality are two important conditions to justify the
structural composition of the neutron/hyperon stars. Both these conditions force
the stars to have ∼90% of neutron and ∼10% proton. With the inclusion of baryons,
the β-equilibrium conditions between chemical potentials for different particles

µp = µΣ+ = µn − µe,

µn = µΣ0 = µΞ0 = µn,

µΣ− = µΞ− = µn + µe,

µµ = µe,

(15)

and the charge neutrality condition are satisfied by

np + nΣ+ = ne + nµ− + nΣ− + nΞ− . (16)

To calculate the mass and radius profile of the static (nonrotating) and spherical
neutron star, we solve the general relativity TOV52 equations which are written as

dP (r)
dr

= −G

c2

[E (r) + P (r)]
[
M(r) +

4πr3P (r)
c2

]

r2
(

1 − 2GM(r)
c2r

) (17)

and

dM(r)
dr

=
4πr2E (r)

c2
(18)

with G as the gravitational constant, E (r) as the energy density, P (r) as the pres-
sure density andM(r) as the gravitational mass inside radius r. We have used c = 1.
For a given EOS, these equations can be integrated from the origin as an initial
value problem for a given choice of the central density Ec(r). The value of r(= R) at
which the pressure vanishes and defines the surface of the star. In order to under-
stand the effect of δ-meson coupling on neutron star structure, we must also look at
what happens to massive objects as they rotate and how this affects the space-time
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around them. For this, we use the code written by Stergioulas53 based on Komastu,
Eriguchi and Hachisu (KEH) method (fast rotation)54,55 to construct mass–radius
of the uniform rotating star. One should note that the maximum mass of a static
star is less than the rotating stars because when the massive objects rotate they
flatten at their poles. The forces of rotation, namely the effective centrifugal force
pulls the mass farthest from the center further out creating the equatorial bulge.
This pull-away from the center will, in part, counteract gravity, allowing the star
to be able to support more mass than its nonrotating star.

We know that the core of neutron stars contains hyperons at very high density
(∼7–8 ρ0) matter. As it is mentioned before, with the presence of baryons, the EOS
becomes softer and stellar properties will change. The maximum mass of hyperon
star decreases about 10–20% depending on the choice of the meson–hyperon cou-
pling constants. The hyperon couplings are expressed as the ratio between the
meson–hyperon and meson–nucleon couplings as

χσ =
gY σ

gNσ
, χω =

gY ω

gNω
, χρ =

gY ρ

gNρ
, χδ =

gY δ

gNδ
. (19)

In the present calculations, we have taken χσ = χρ = χδ = 0.6104 and χω =
0.6666.58 One can find similar calculations for stellar mass in Refs. 59–61. Now,
we present the star properties like mass and radius in Figs. 5 and 6. In Fig. 5,
we have plotted the mass–radius profile for the proton–neutron star as well as for
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Fig. 5. (Color online) The mass–radius profile for static star with different parametrization like
G2,27 NL3,13 NL3*,56 NL-SH,12 FSU16 and FSU2.57 (a) is for proton–neutron star and (b) is
for the hyperon star. The maximum mass M and the corresponding radius obtained by various
parameter sets are given in the parenthesis.
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Fig. 6. (Color online) The mass–radius profile of the static and rotating proton–neutron and
hyperon stars with various combination of gδ and gρ in G2+ δ. (a), (c) is for proton–neutron star
and (b), (d) is for the hyperon star. (a), (b) for static and (c), (d) for rotating cases.

the hyperon star using a wide variation of parameter sets starting from the old
parameter like NL-SH12 to the new set of FSU2.57 The mass–radius profile varies
to a great extent over the choice of the parameter. For example, in FSU parameter
set,16 the maximum possible mass of the proton–neutron star is ∼1.75 M�, while
the maximum possible mass for the NL3 set13 is ∼ 2.8 M�. These results are
shown in the left panel of Fig. 5, while the right panel shows the same things for
the hyperon star (the maximum mass and the corresponding radius for different
forces are given in the parenthesis).

3.5. Effects of δ-meson on static and rotating stars

The main aim of this paper is to understand the effects of δ-meson on neutron
stars both with and without hyperons. Figure 6 represents the mass–radius profiles
for nonrotating and rotating stars taking into account the presence of with and
without hyperons. These profiles are shown for various combinations of gρ and gδ

(see Table 1), which we have obtained by fitting the symmetry energy Esym of pure
nuclear matter. Analyzing the graphs, we notice a slight change in the maximum
mass with gδ value. That means the mass of the star goes on decreasing with an
increase value of the δ-meson coupling in hyperon star. A further inspection of
the results reveals that, although the δ-meson coupling has a nominal effects on the
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maximum mass of the proto–neutron stars, we get an asymptotic increase in the
mass. This asymptotic nature of the curves is more prominent in the presence of
hyperons inside the stars. Similar phenomena are also observed in case of rotating
stars.

The empirical formula for the relation between maximum frequency fmax with
mass of the neutron star for a given EOS is given as62,63 fmax ≈ 1.22kHz√
M static

max /M�(Rstatic
max /10km)−3/2, where M static

max = maximum static mass and
Rstatic

max = maximum allowed radius for a neutron star. In reality, the neutron
stars have a wide range of frequencies due to the fluidity of the stars oscillat-
ing in various modes.64 Among them, the most important modes are the first
pressure mode (pI -mode) and the fundamental mode of the fluid oscillation (f -
mode). The empirical formulas for the frequencies of these two modes are ff =
(0.79± 0.09) + (33± 2)

√
M/R3 and fp = 1/M(−1.5± 0.8) + (79± 4)M/R, respec-

tively, where M and f in km and kHz. The above two relations are obtained by
using a wide sample of EOSs.64

In the present calculations, we assume the frequency of the rotating neutron
star is within the Keplerian frequency limit. At this limit, the spin frequency of
the neutron star is equal to the orbital frequency for (along a circular path on the
equator of the NS).62 If the orbital frequency for > fK (Kepler frequency), then the
hydrostatic equilibrium of the NS does not hold good. To make it clear, the Kepler

0.8 1.2 1.6 2 2.4
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f k(H
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without hyperon with hyperon (gρ, gδ)

XTE J1739-285
ν=1122 Hz
(not confirmed)

J 1748-2446ad
ν=716 Hz

(a) (b)

Fig. 7. (Color online) Keplerian frequency of the rotating proton–neutron and hyperon stars
with various combination of gδ and gρ in G2 + δ. (a) is for proton–neutron star and (b) is for the
hyperon star. The results are obtained from RNS code.53
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frequency as a function of NS mass is shown in Fig. 7 with and without considering
hyperon into account. The results of Fig. 7 are obtained from the RNS code and
the expression for the Keplarian frequency, i.e., the maximum frequency obtained
from the general theory of relativity can be found in Refs. 53 and 68. In this figure,
the variation of fK is shown as a function of M/M� with various combinations of
gρ and gδ which we have already fixed (see Table 1). We noticed a finite effect of
gρ and gδ variation on the mass and Keplerian frequency of the pure neutron and
hyperon stars.

For quite some time, pulsar B1937+21 with frequency 642Hz was considered as
the fasted spinning NS. However, Hessels et al.70 found even more faster spinning
NS pulsar J1748-2446ad at frequency 716.356Hz. This NS has a mass of 0.14M�
companion. It is difficult to obtain 0.14M� from the EOS at supra-nuclear densi-
ties. Our calculations suggest that if pulsar has a mass less than 1.4M� than the
larger density slope of the symmetry energy at saturation would be excluded. If we
consider the neutron star mass to be greater than 2.0M� and hyperons are present
in it, then the star mass will be 1.6M� within the pulsar XTE J1739285 NS.69

Here, we analyzed the effects of δ-meson coupling on neutron and hyperon stars.
We observed that the mass of the star decreases when hyperons are included in the
calculations, as a result, the maximum mass of the star with G2 + δ set becomes
much less than 2M�, the latest observation of a massive neutron star. In summary,
the following possibilities are in order:

(i) Since the mass obtained without hyperon for static case is ∼2M�, in this
situation one does not need to reduce the mass any more by adding hyperons
into it. This can be justifed by assuming that in massive neutron star, there is no
hyperon. The absence of hyperons in massive neutron star may not be a convincing
explanation because of the highly dense matter in the core of the NS, which favors
the production of hyperon. (ii) The rotation of a NS increases the maximum allowed
mass. On the other hand, the inclusion of hyperon decreases the mass. In the
present case, even if we consider the rotation of the star, it is not sufficient to get
the maximum mass ∼2M� (see Fig. 6(d)). (iii) The third possibility is the effect
of δ-meson coupling, which may increase the mass of the hyperon star after its
insertion into the model. Although its effect is finite, it is not sufficient to increase
the hyperon mass to two solar unit. Thus, the addition of δ-meson may not be
sufficient to explain the heavier mass of the NS. (iv) Probably, the fourth possibility
may be the most acceptable explanation in which we suggest the modification of
the EOS, such that after the addition of hyperon, the mass of the static neutron–
hyperon star will be ∼2M�. In particular, the hyperon–meson coupling should be
re-investigated to get a proper coupling constants, which allowed the maximum
mass ∼2M� with hyperon. Work in this direction is in progress.67

3.6. Effects of δ-meson on baryon production

Finally, we want to see the effects of δ-meson coupling on the particle production for
the whole baryonic family at various densities in nuclear matter system. The Fermi
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energy of both proton and neutron increases with density for their Fermionic nature.
After a certain density, the Fermi energy of the nucleon exceeded the rest mass
energy of the nucleon (∼1000MeV), and strange particles (Σ,Λ,Ξ) are produced.
As a result, the EOS of the star become soft and give a smaller star mass compared
to the neutron star containing only protons, neutrons and electrons. The decrease
in star mass in the presence of whole baryon octet can be understood from the
analysis of Fig. 8. From the figure, it is clear that δ-meson has a great impact on the
production of hyperons. The inclusion of δ-meson accelerates the strange particle
production. For example, the evolution of Σ− takes place at density ρB = 1.75ρ0

in the absence of δ-meson. However, it produces at ρB = 1.67ρ0 when δ-meson is
there in the system. Similarly, analyzing the evolution of other baryons, we notice
that although the early production of baryons in the presence of δ-meson is not in
a definite proportion to each other, in each case the yield is faster. A significant
shifting towards lower density is maximum for heaviest hyperon (Ξ0) and minimum
for nucleon (see Fig. 8). For example, Ξ− evolves at ρB = 6.5 ρ0 for a non-δ system
and ρB ∼ 5.0 ρ0 for medium when δ-meson is included. Thus, the δ-coupling has a
sizable impact on the production of hyperons like Ξ−,Ξ0 and Σ+.
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Fig. 8. (Color online) Yield of strange particles as a function of density. The upper panel (a) is
with G2 parameter set (without taking δ-meson coupling) and the lower panel (b) is with δ-meson
coupling.
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3.7. Fitting of gρ and gδ with fixed binding energy and charge

radius

In the previous subsections, we have seen the effects of (gρ, gδ) pair with a constant
symmetry energy on the maximum mass and radius of the neutron and hyperon
stars. The effects of the (gρ, gδ) pairs are not prominent on the star structure in
this method. On the other hand, it affects the bulk properties like binding energy
and root mean square radius considerably for asymmetric finite nucleus. In Table 2,
we have given the mass and charge radius for some of the selected nuclei. Although
all the combination of gρ and gδ are fixed at a constant symmetry energy, the
binding of 208Pb differs by 90MeV in the first and last combination of gρ and gδ.
In this subsection, we would like to change the strategy to select the (gρ, gδ) pairs.
Here, we have followed the second procedure as we have discussed in the previous
subsection, i.e., we find the values of gρ and gδ by adjusting the binding energy and
charge radius of 208 Pb. Once we get the (gρ, gδ), we use the pair for the calculations
of other nuclei of Table 2. Surprisingly, the outcome of binding energy and charge
radius matches pretty well with the original calculations. The gρ and gδ combination
along with the corresponding mass and radius of a neutron star is given in Table 3.
From the table, it is clear that these combinations are also not affecting much the
maximum mass and radius of the neutron star. However, the Esym, Lsym and Ksym

calculated from the corresponding (gρ, gδ) combinations for nuclear matter change
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Fig. 9. (Color online) Mass and radius profile of hyperon star with G2 + δ parameter set, but
with different meson–hyperon coupling of Ref. 59.
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a lot (see Table 3). We used the hyperon–meson coupling constants of Ref. 59 to
evaluate the hyperon star structure. The calculated results for static and rotating
hyperon star are plotted in Fig. 9. The maximum mass increases and the radius
decreases slightly with the addition of δ-meson to the star system.

4. Summary and Conclusions

In summary, using the effective field theory approach, we discussed the effects of
isovector scalar meson on hyperon star. In the inclusion of δ-meson with G2 param-
eter set, we have investigated the static and rotating stellar properties of neutron
star with hyperons. We fitted the parameters and saw the variation of gρ and gδ

at a constant symmetry energy for both the nuclear and neutron matter. We also
used these (gρ, gδ) pairs to finite nuclei and found a large change in binding energy
for asymmetric nuclei. Then we re-fitted the (gρ, gδ) pairs keeping binding energy
and charge radius fixed for 208Pb and tested the effects for some selected nuclei and
reproduced the data similar to the original G2 set. With the help of G2 + δ model,
for static and rotating stars without hyperon core, we get the maximum mass of
∼2M� and ∼2.4M�, respectively. This prediction of masses is in agreement with
the recent observation of M ∼ 2M� of the stars. However, with hyperon core the
maximum mass obtained are ∼1.4M� and ∼1.6M� for static and rotating hyperon
stars, respectively. In addition, we have also calculated the production of whole
baryon octet with variation in density. We find that the particle fraction changes
a lot in the presence of δ-meson coupling. When there is δ-meson in the system,
the evolution of baryons is faster compared to a non-δ system. This effect is signif-
icant for heavier masses and minimum for lighter baryon. Hence, one can conclude
that the yield of baryon/hyperons depends very much on the mesons’ couplings.
One important information is drawn from the present calculations is that the effect
of gδ is just opposite to the effect of gρ. As a consequence, many long standing
anomaly, such as the comparable radii of 40Ca and 48Ca be resolved by adjusting
the (gρ, gδ) pairs properly. Keeping in view the importance of δ-meson coupling and
the reverse nature of gρ and gδ, it is necessary to get a new parameter set including
proper values of gδ and gρ, and the work is under progress.
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