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Abstract: Anisotropy in pressure within a star emerges from exotic internal processes. In
this study, we incorporate pressure anisotropy using the Quasi-Local model. Macroscopic
properties, including mass (M), radius (R), compactness (C), dimensionless tidal deformability
(Λ), the moment of inertia (I), and oscillation frequency (f), are explored for the anisotropic
neutron star. Magnitudes of these properties are notably influenced by anisotropy degree.
Universal I–f–C relations for anisotropic stars are explored in this study. The analysis
encompasses various EOS types, spanning from relativistic to non-relativistic regimes. Results
show the relation becomes robust for positive anisotropy, weakening with negative anisotropy.
The distribution of f -mode across M–R parameter space as obtained with the help of C–f
relation was analyzed for different anisotropic cases. Using tidal deformability data from
GW170817 and GW190814 events, a theoretical limit for canonical f -mode frequency is
established for isotropic and anisotropic neutron stars. For isotropic case, canonical f -
mode frequency for GW170817 event is f1.4 = 2.606+0.457

−0.484 kHz; for GW190814 event, it is
f1.4 = 2.097+0.124

−0.149 kHz. These relationships can serve as reliable tools for constraining nuclear
matter EOS when relevant observables are measured.
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1 Introduction

The detection of gravitational waves (GWs) is a crucial objective in astrophysics today, with
significant efforts being devoted to this problem globally. Several ground-based experiments
and space missions have already been devised and are poised to yield significant discoveries in
the near future [1–5]. Furthermore, ongoing efforts are underway to develop a third-generation
GW telescope, such as the Einstein Telescope [6] and Cosmic Explorer [7], which promise
even higher levels of sensitivity. The reason why the detection of GWs is so challenging is
that they are incredibly weak, necessitating detectors with very high sensitivity, as well as
the precise waveform of the signal emitted from astrophysical objects.

Neutron stars (NSs) exhibit oscillations that are regarded as potential sources of GWs,
manifesting in various forms including radial [8–13] and non-radial [14–17] modes. When a
NS experiences external or internal disturbances, it emits GWs through different oscillation
modes known as quasi-normal modes (QNMs), each characterized by the restoring force that
brings them back to their equilibrium state. Notable QNMs include the fundamental mode
(f -mode) [18–20], pressure mode (p-mode) [15, 21], gravity mode (g-mode) [22–29], rotational
mode (r-mode) [30–35], space-time mode (w-mode) [36, 37], and other modes [38–41]. The
frequencies of these oscillations are directly linked to the internal structure and composition
of the stars [24]. Theoretical studies indicate that the f -mode possesses the highest likelihood
of being detected initially, with approximately 10% of the gravitational radiation attributed
to f -mode oscillations for l = 2 [42].

Different modes of oscillation exhibit distinct behaviors depending on the type of star,
offering valuable insights. For instance, the signature of the hadron-quark phase transition
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can be inferred through the observation of both f and g-modes in hybrid stars [39]. A study
by Flores and Lugones [40] suggests that compact objects emitting GWs within the frequency
range of 0–1 kHz may be hybrid stars, while frequencies exceeding 7 kHz could indicate strange
stars. However, the nature of compact objects and their GW emissions still pose challenges
due to the limitations of our terrestrial detectors, which are unable to detect certain frequency
ranges. Nonetheless, constraints on the frequency of various modes can be established by
establishing relationships between the frequency and specific properties of NSs. Several
approaches have been proposed to link the f -mode frequency with various NS properties,
including compactness [43], the moment of inertia [44], and tidal deformability [21, 45, 46].
In this work, we aim to derive such relationships in a model-independent manner, known
as universal relations (URs). These URs provide valuable insights into the properties of
NSs and their associated oscillation modes.

In literature, there are several URs have already been established between different
properties of the NS [47–57]. However, the focus of this study primarily lies on the I–f–C
relations specifically for anisotropic NSs. Previous URs proposed thus far have mainly been
formulated for isotropic NSs, assuming a matter-energy distribution characterized by an
isotropic perfect fluid. However, at extremely high-density regions, the presence of nuclear
matter can induce deviations between the tangential and radial components of pressure,
leading to the emergence of an anisotropic fluid. To obtain more accurate results, we aim to
include the effects of anisotropy in our analysis. Anisotropy in NSs can arise from various
factors, such as the influence of a high magnetic field [58–65], pion condensation [66], phase
transitions [67], relativistic nuclear interactions [68, 69], core crystallization [70], and the
presence of superfluid cores [71–73], among others. Several models have been proposed
to incorporate anisotropy within NSs, such as the Bowers-Liang model [74], Horvat et al.
model [75], Cosenza et al. model [76], and others. In this study, we will primarily focus on
the Quasi-Local (QL) model, as proposed by Horvat et al. [75], to describe anisotropy within
NSs. More details about the QL-model will be elaborated in section 2.2.

The presence of pressure anisotropy within NSs has a significant impact on various
macroscopic properties, including the mass-radius relation, compactness, surface redshift,
moment of inertia, tidal deformability, and non-radial oscillations [77–94]. The specific impact
on these quantities varies depending on the degree of anisotropy and the choice of the model
employed. Biswas and Bose constrained the degree of anisotropy within stars utilizing tidal
deformability data from the GW170817 event [90]. More recently, the I-Love−C universal
relation for anisotropic NSs has been proposed. By incorporating observational data from
GW170817, constraints have been placed on the moment of inertia and radius of canonical
anisotropic stars for different degrees of anisotropy [95].

In this study, we introduce the I–f–C URs for anisotropic NSs for the first time, utilizing
a range of models describing unified EOSs such as RMF models (for npeµ, hyperonic npeµY,
and strange npeµYs matter), density-dependent RMF models, and Skyrme-Hartree-Fock
(SHF) models [15, 96–102]. The unified EOSs closely reproduce the properties of finite nuclei,
nuclear matter, and NSs and support ≥ 2.0M⊙ star. A total of 60 EOSs (35 from RMF
models and 25 from SHF models) are considered in this paper. By employing these EOSs,
we calculate various macroscopic properties of NSs with varying degrees of anisotropy using
the QL-model. The primary objective of this work is to constrain the f -mode frequency
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of anisotropic stars by leveraging recent observational data. Detailed formalism, results,
and discussions are presented in the subsequent sections, shedding light on the intricate
relationship between anisotropy, macroscopic properties, and the f -mode frequency in NSs.

2 Theoretical framework

2.1 Stellar structure equations

The line element that describes the space-time inside a spherically symmetric star is [103, 104]

ds2 = −e2ψ (dt)2 + e2λdr2 + r2(dθ2 + sin2 θdϕ2) (2.1)

where, ψ and λ are metric functions that depend on r. Introducing anisotropy in the
matter-energy distribution of the system, we obtain the following stress-energy tensor [83]

Tµv = (E + Pt)uµuv + Ptgµv − σkµkv , (2.2)

where uµ represents the four-velocity of the fluid, and kµ is a unit space-like four-vector. In
addition, E denotes the energy density, and σ represents the anisotropic pressure (σ = Pt−Pr),
where Pt and Pr are the tangential and radial pressure, respectively. The four-vectors uµ
and kµ must fulfill the following conditions:

uµu
µ = −1, kµk

µ = 1, uµk
µ = 0. (2.3)

By solving Einstein field equations [105] for the anisotropic matter-energy distribution in
spherically symmetric space-time, one can obtain the modified Tolman-Oppenheimer-Volkoff
(TOV) [106] equations, which describes the stellar structure of an anisotropic NS given as

dm

dr
= 4πr2E ,

dPr
dr

= − (Pr + E)
(
m

r2 + 4πrPr
)
e2λ + 2

r
σ ,

dψ

dr
= − 1

Pr + E
dPr
dr

+ 2σ
r (Pr + E) , (2.4)

where m(r) is the enclosed mass corresponding to radius r and λ(r) is the metric function
defined as

e−2λ = 1 − 2m
r
.

In order to numerically solve the aforementioned set of coupled ordinary differential
equations (ODEs), specific boundary conditions need to be established. Conventionally, the
surface of the star is set at r = R, where the radial pressure becomes zero (Pr = 0). As the
equilibrium system exhibits spherical symmetry, the Schwarzschild metric is employed to
describe the exterior space-time. This choice ensures metric continuity at the surface of the
anisotropic neutron star (NS) and imposes a boundary condition on ψ. Specifically, the value
of ψ at r = R must coincide with the value of ψ in the Schwarzschild metric at r = R.

ψ (r = R) = 1
2 ln

[
1 − 2M

R

]
.
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By making a selection of an EOS governing the radial pressure (Pr) and adopting an
anisotropic model for σ, it becomes feasible to numerically solve eq. (2.4). This numerical
solution involves specifying a central energy density E(r = 0) = Ec, while enforcing the
initial condition m(r = 0) = 0.

2.2 Anisotropy model

For anisotropic NS, we use the Quasi-Local (QL) model proposed by Horvat et al. [75]
describing the quasi-local nature of anisotropy in the following

σ = Pt − Pr = βQL
3 Prµ = βQL

3 Pr(1 − e−2λ) , (2.5)

where the factor βQL depicts the measurement of the degree of anisotropy in the fluid and
(µ = 1 − e−2λ = 2m(r)

r ) also known as local compactness is the quasi-local variable. In order
to maintain their spherically symmetric configuration, anisotropic NSs must adhere to specific
conditions, as outlined in references [83, 94]. These conditions include:

• Absence of anisotropy at the center of the NS i.e. σ = 0, or equivalently, Pr = Pt
at r = 0.

• Positivity of Pr and Pt throughout the entire star.

• Positivity of the null energy density (E), dominant energy density (E + Pr, E + Pt), and
strong energy density (E + Pr + 2Pt) within the star.

• Non-negativity of the sound speed (c2
s) inside the star, with the c2

s in the radial and
tangential directions satisfying the following constraints: 0 < c2

s,r, c
2
s,t < 1. It is also

essential to ensure that the speed of sound does not exceed the speed of light (c = 1 in
this study).

Therefore, the conditions mentioned above are crucial for maintaining the spherical symmetry
and physical consistency of anisotropic NSs.

The advantage of using the QL-model with anisotropy is that it ensures the fluid remains
isotropic at the center of the star due to the behavior of (1 − e−2λ = 2m/r) ∼ r2 when
r → 0, while also being applicable only to relativistic configurations where anisotropy may
arise at high densities [89]. For the 60 EOS-ensembles considered in this study, the QL-
model with anisotropy parameter ranging from −2 < βQL < 2 satisfies all the necessary
conditions to maintain spherical symmetry in an anisotropic NS configuration [83, 94]. Figure 1
shows that the speed of sound in the tangential direction (c2

s,t = ∂Pt
∂E ) for maximum mass

configuration corresponds to DD2 EOS, satisfies the causality condition throughout the
star for −2 < βQL < 2.

The mass-radius (MR) profile for a given EOS can be obtained by solving the TOV
eqs. (2.4) for various central densities, which generate a sequence of mass and radius. Figure 2
illustrates the MR profiles for the anisotropic star for the DD2 EOS. Adjusting the value
of βQL influences the maximum mass and the corresponding radius of the NS. The positive
value of βQL increases the maximum mass and its associated radius, and vice-versa for βQL.
Observational data from different observations, such as X-ray, NICER, and GW (GW170817
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Figure 1. The radial profile of the sound speed (c2
s,t) for different βQL values of the maximum mass

NS corresponding to the DD2 EOS.
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Figure 2. Left: mass-radius profiles for anisotropic NSs with −2 < βQL < 2 for the DD2 EOS.
The black dashed line represents the isotropic case. The limits on mass and radius from the PSR
J0030+0451 [108, 109] are shown in the light pink boxes, and the revised NICER data [110] is shown
in the light blue boxes. The green horizontal bar represents the mass range observed in the GW190814
event [112]. Right: the MI as a function of mass for different values of βQL. The error bars were
calculated based on the results of several pulsar analyses as done in ref. [97].

and GW190814), to constrain the degree of anisotropy within NS [108–112]. For example,
values of 1 < βQL < 2 satisfy the mass constraint (2.50–2.67M⊙) of the GW190814 event,
suggesting that one of the merger companions may have been a highly anisotropic NS [81].

2.3 Slowly rotating NS and moment of inertia

The MI of a slowly rotating anisotropic NS can be expressed as [86]

I = 8π
3

∫ R

0
r4eλ−ψ (E + Pr + σ) ω̄Ωdr, (2.6)

where, ω̄ is the frame-dragging angular frequency [113], and Ω is the angular velocity of a
uniformly rotating NS. The MI of an anisotropic NS is shown as a function of its mass in
the left panel of figure 2. As the NS mass increases, the MI also increases until a stable
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Figure 3. Left: the Λ as a function of the mass for different values of the βQL corresponds to DD2
EOS. The error bars in both panels represent the observational constraints from GW170817 [111] and
GW190814 events [112]. Right: the f -mode frequency as a function mass. The error bars represent
the theoretical limits that we obtained in subsection 3.4.

configuration is reached, after which it starts to decrease. Furthermore, both the mass and
MI of the NS increase with positive values of βQL, while the opposite trend is observed for
negative values of βQL. The impact of anisotropy on the MI is more pronounced for high-mass
NSs compared to low-mass ones. Kumar and Landry [97] have established constraints on the
MI inferred from various sources such as double neutron stars (DNS), millisecond pulsars
(MSP), and low-mass X-ray binaries (LMXB). The error bars in the figure represent the
possible range of values for these constraints.

2.4 Tidal deformability parameters

When the NS is present in the external field (ϵij) created by its companion star, it acquires a
quadrupole moment (Qij). The magnitude of the quadrupole moment is linearly proportional
to the tidal field and is given by [114, 115]

Qij = −αϵij , (2.7)

where α is the tidal deformability of a star. α can be defined in terms of tidal Love
number k2 as α = 2

3k2R
5. The dimensionless tidal deformability of the star is defined as

Λ = α/M5 = 2
3k2C

−5. The detailed derivation of k2 for an anisotropic star can be found
in refs. [90, 94, 95].

The dimensionless tidal deformability of anisotropic NSs is shown in figure 3. As
the anisotropy parameter βQL increases, the magnitude of the Love number k2 and its
corresponding tidal deformability Λ decrease, while they increase with decreasing βQL. The
impact of anisotropy on tidal deformability, as mentioned above, reverses after attaining
maximum mass configuration, beyond which the star becomes unstable. The GW170817
(NS-NS merger) event constrains Λ1.4 to be 190+390

−120 [111]. In the case of the GW190814
merger event, one should not rule out the possibility of the lower mass component being a
massive NS. With the spectral EOS distribution and conditioned used for GW170817 [116],
each EOS is reweighted by the probability that its maximum mass is at least as large as the
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mass of the secondary component (2.6M⊙), which put a limit on Λ1.4 = 616+273
−158 [112] (in

the NS-BH scenario). In this case, the predicted value of Λ1.4 satisfies the GW190814 limit
for almost all values of βQL, whereas, for DD2 EOS, the GW170817 limit is met in the range
of 0.5 < βQL < 2. However, Λ sharply decreases once the stable configuration is exceeded.

2.5 Non-radial oscillation in Cowling approximation

The Cowling approximation, initially proposed by Cowling [117] for Newtonian stars and
later extended to the case of NSs by McDermott et al. [14]. Under this approximation, the
metric perturbations are neglected, keeping the space-time metric fixed. We will provide a
brief explanation of the derivation of the perturbation equations in the Cowling formalism
in the following, while more comprehensive details can be found in [79]. One can obtain
the oscillation equations in the Cowling approximation by considering a harmonic time
dependence for the perturbation function W (r, t) = W (r)eiωt and V (r, t) = V (r)eiωt, where
ω represents the oscillation frequency in the following [79, 118]

W ′ = dE
dPr

[
ω2 E + Pt

E + Pr

(
1 + ∂σ

∂Pr

)−1
eλ−2ψr2V + ψ′W

]
− l(l + 1)eλV

− σ

E + Pr

[2
r

(
1 + dE

dPr

)
W + l(l + 1)eλV

]
,

V ′ = 2V ψ′ −
(

1 + ∂σ

∂Pr

) E + Pr
E + Pt

eλ
r2W −

[
σ′

E + Pt
+
(
dE
dPr

+ 1
)

σ

E + Pt

(
ψ′ + 2

r

)

−2
r

∂σ

∂Pr
−
(

1 + ∂σ

∂Pr

)−1( ∂2σ

∂P 2
r

P ′
r + ∂2σ

∂Pr∂µ
µ′
)]

V.

(2.8)

To solve the equations mentioned earlier, it is necessary to consider boundary conditions
at the center and surface of the star in the following

ω2 E + Pt
E + Pr

(
1 + ∂σ

∂Pr

)−1
e−2ψV +

(
ψ′ − 2

r

σ

E + Pr

)
e−λW

r2 = 0, (2.9)

and the boundary condition at the star center (r = 0) satisfies

W̃ = −lṼ

where, the functions W̃ and Ṽ are defined as W = W̃ rl+1 and V = Ṽ rl. In this work, we
focus on the quadrupolar modes, which correspond to l = 2. In figure 3, we show the f -mode
frequency of a NS as a function of its mass by varying the anisotropic parameter for the
DD2 EOS as a representative case. For a specific mass NS, the frequency decreases for a
positive value of βQL while increases for a negative βQL till maximum mass is attained, after
which the star becomes unstable. Using the tidal deformability limit from GW170817 and
GW190814, one can impose constraints on the canonical f -mode frequency for isotropic and
anisotropic stars, as discussed in subsection 3.4. We also overlaid the derived theoretical
limit on the figure to assess its consistency.
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3 Universal relations

The main purpose of UR is to explore the star properties that are difficult to measure through
observations. Several URs have already been proposed to estimate the properties of NS, but
they are primarily focused on isotropic cases [47, 49, 119–122]. However, very few studies
have been dedicated to URs for anisotropic stars, which are more realistic than isotropic ones.
Hence, in this study, we aim to explore various types of URs between the moment of inertia,
tidal deformability, compactness, and f -mode frequency for anisotropic NSs.

Although some known URs for anisotropic NS have been proposed in refs. [48, 90, 95],
our primary focus will be on the URs between the moment of inertia, f -mode frequency, and
compactness (I–f–C) as well as the f–Love relation of the anisotropic NS. The NS oscillates
with different modes, emitting gravitational waves (GWs). The oscillation frequencies, such
as the f -mode, p-mode, etc., might be detectable in the near future with our terrestrial
detectors. However, to interpret these observations effectively, we require prior theoretical
knowledge. Therefore, approximate URs for anisotropic NSs hold great significance in
astrophysical observations.

Before delving into different URs, it is necessary to normalize/dimensionless certain key
parameters of NSs that are required to obtain the URs. Here, we chose the units of MI and
f -mode frequency are kg·m2 and kHz, respectively. Therefore, these quantities need to be
normalized, and their normalized values are given as

• Normalized MI (η) =
√
M3/I

• Normalized f -mode frequency (ω̄) = ωM

Here, we calculate the URs between I–f , C–f , I–C, and f -Love for anisotropic NSs. For this
study, we chose 60 EOSs, as mentioned in the introduction. Regarding anisotropy, we adopt
the same QL-model with different degrees of anisotropy, varying from −2 to +2. Alternatively,
one may opt for other models, such as Bower-Liang’s, as used in ref. [95].

3.1 I–f relation

The I–f UR for isotropic NS with a few EOSs was first calculated by Lau et al. [44]. Breu
and Rezzolla [49] studied the universal behavior of dimensionless MI, which is defined as
Ī = I/M3, and is more accurate than the dimensionless MI defined earlier, Ī = I/MR2.
Lau and Leung replaced Ī = I/M3 with η =

√
M3/I, called as normalized MI/effective

compactness, due to its proportionality with compactness for stars. Therefore, in this study,
we use η =

√
M3/I rather than Ī = I/MR2. The relation between I–f for anisotropic NSs

is performed using the least-squares fit with the approximate formula

η =
n=4∑
n=0

an(ω̄)n . (3.1)

The normalized MI (η) is plotted as the function of normalized f -mode frequency (ω̄) in
figures 4–5 with βQL = −2, 0,+2 for anisotropic NS. The residuals are computed with the
formula,

∆η = η − ηfit
ηfit

. (3.2)
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Figure 4. I–f relation with anisotropy parameter βQL = 0 for selected EOSs. The black-dashed
line shows the least-squares fit using eq. (3.1). The lower panel displays the residuals of the fitting
obtained using the formula in eq. (3.2).
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Figure 5. Left: same as figure 4, but with βQL = +2. Right: for βQL = −2.

We enumerated the coefficients (an) with their corresponding reduced chi-squared (χ2
r) errors

in table 1. An increase in anisotropy results in a decrease in the value of χ2
r error, indicating

stronger EOS insensitive relation, and vice versa.

3.2 C–f relation

Andersson and Kokkotas [38] first established the correlation between C and f -mode frequency.
Here, we calculate the C–f relations for anisotropic NSs, using the approximate formula
obtained through least-squares fitting

C =
n=4∑
n=0

bn(ω̄)n . (3.3)

Compactness is plotted as the function of normalized f -mode frequency (ω̄) in figures 6–7
with βQL = −2, 0,+2 for anisotropic NS. The coefficients (bn) with χ2

r-error are enumerated
in table 1. The magnitude of bn increases with increasing βQL, implying that the fitting
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I–f
βQL = −2.0 −1.0 0.0 +1.0 +2.0

a0
(
10−2) = 2.825 2.848 2.918 2.886 2.903
a1 = 3.945 3.919 3.865 3.874 3.856

a2
(
101) = −2.436 −2.303 −2.139 −2.092 −2.011

a3
(
102) = 1.364 1.218 1.059 0.982 0.889

a4
(
102) = −2.852 −2.457 −2.064 −1.852 −1.613

χ2
r

(
10−6) = 13.511 8.514 5.338 3.541 2.517

C–f
βQL = −2.0 −1.0 0.0 +1.0 +2.0

b0
(
10−3) = 4.007 4.093 4.084 4.197 4.249
b1 = 2.232 2.220 2.223 2.212 2.209
b2 = −8.752 −8.143 −7.963 −7.531 −7.269

b3
(
101) = 3.066 2.656 2.629 2.371 2.211
b4 = 4.836 6.740 −3.179 5.173 −7.423

χ2
r

(
10−6) = 2.228 1.702 1.846 2.282 2.871

C–I
βQL = −2.0 −1.0 0.0 +1.0 +2.0

c0
(
10−3) = −8.651 −8.244 −8.941 −7.860 −7.637

c1
(
10−1) = 4.473 4.348 4.477 4.236 4.171
c2 = 1.360 1.465 1.389 1.557 1.612
c3 = −3.986 −4.288 −4.080 −4.516 −4.668
c4 = 4.892 5.272 5.147 5.610 5.827

χ2
r

(
10−6) = 6.338 6.382 6.436 6.313 6.210

Table 1. The fitting coefficients are listed for I–f , C–f , and C–I relations with βQL = −2.0,−1.0,
0.0,+1.0,+2.0. The reduced chi-squared (χ2

r) is also given for all cases.
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C

Figure 6. C–f relation with anisotropy parameter βQL = 0 for assumed EOSs. The black-dashed
line is fitted with eq. (3.3). The lower panel shows the residuals for the fitting are calculated.

is more robust for the isotropic case. Additionally, χ2
r also increases with the inclusion of

anisotropy, and it is the minimum for the isotropic case. Therefore, the inclusion of anisotropy
(whether positive or negative) weakens the EOS insensitive C–I UR.

One of the primary applications of C–f UR involves determining M and R based on the
analysis of observed mode data, as articulated by Andersson and Kokkotas [43]. For a unique
choice of f -mode frequency the C–f UR can be exploited to construct a M–R relation. This
constrained relationship, accounting for uncertainties represented by standard deviations
in UR, yields M–R bands, illustrated in the left panel of figure 8. In this representation,
the orange M–R band delineates a region where neutron stars are anticipated to exhibit a
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Figure 7. Left: same as figure 6, but with βQL = +2. Right: for βQL = −2.

frequency of f = 2.606+0.457
−0.484 kHz, with the solid dashed line denoting f = 2.606 kHz. Similarly,

the pink band corresponds to a region where neutron stars are expected to possess a frequency
of f = 2.097+0.124

−0.149 kHz, and the solid dashed line represents f = 2.097 kHz. It is noteworthy
that the frequency constraints employed for plotting M–R bands align with the canonical
f -mode frequency constraints for isotropic neutron stars determined in this study for the
GW170817 and GW190814 events. The horizontal error bars in the left panel of figure 8
indicate radius limits imposed by the M–R bands of the respective events, considering a
canonical mass neutron star.

The right panel of figure 8 portrays the distribution of f -mode frequencies across the
M–R parameter space for isotropic neutron stars based on C–f UR. The black dashed line
represents a specific set of mass and radius values for isotropic stars, anticipated to exhibit
the mentioned frequency according to C–f UR. The figure also depicts variations in these
M–R lines resulting from the inclusion of anisotropy. NSs with frequencies f < 1.5 kHz
lie in the low compactness region and suffer minimal changes in mass and radius due to
the inclusion of anisotropy. Through observing M–R lines as depicted in figure 8, we can
conclude that for a constant mass NS having a fixed frequency with f ≥ 1.5 kHz, the radius
would tend to decrease with the presence of positive anisotropy and increase for negative
anisotropy, altering the compactness of the star in order to maintain its natural frequency till
a certain critical point/set of mass and radius is reached. After this, the effect of anisotropy
on M–R lines reverses. This kind of behavior, in which the effects of anisotropy on the NS
parameter reverses, is likely to originate due to an unstable core. We suspect that this kind of
instability arises due to presence of central density beyond the maximal stable configuration
(ρc > ρ̄c) following the standard stability criterion

(
∂M
∂ρc

∣∣∣
ρc=ρ̄c

= 0
)

[123]. This suggests that
the critical mass-radius point in the M–R curves is the maximum stability point, beyond
which the NSs become unstable in nature.

3.3 C–I relation

The relationship between the dimensionless MI (Ī = I/M3) and compactness has been
established as a lower-order polynomial fit by Ravenhall and Pethick [124]. Since then, this
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Figure 8. Left: mass-radius profiles of isotropic NSs for EOS ensembles that we have considered in this
study. The orange and pink colored MR bands correspond to limits on NS’s mass and radius imposed
by isotropic C–f UR for the canonical f -mode frequency (f1.4) that was obtained through f -Love UR
with the help of tidal deformability constraints (Λ1.4) of GW170817 [111] and GW190814 [112] events,
respectively. The horizontal error bars illustrate the radius limits for a canonical mass NS imposed by
the frequency bands for respective events. Right: the frequency distribution contour plot across the
M–R parameter space. This distribution is imposed by the isotropic C–f UR. M–R lines for isotropic
cases corresponding to a set of frequencies are shown in black dashed-dot lines. The red and blue
dashed lines represent the M–R curves for anisotropy parameter βQL = +2 and −2, respectively.

relation has been studied and modified by various authors, including for the double pulsar
system with higher-order polynomial fitting [125], scalar-tensor theory and R2 gravity [122,
126], rotating stars [49], and strange stars [127]. In this work, we investigate the C–I relations
for anisotropic NS using the normalized moment of inertia (η =

√
M3/I) instead of the

dimensionless one. We use the approximate formula to perform a least-squares fit

C =
n=4∑
n=0

cn(η)n. (3.4)

We display the relationship between C and η for anisotropic NSs with βQL = −2, 0,+2,
respectively in figures 9–10. We observe that the inclusion of anisotropy has little effect
on the χ2

r error, indicating that the C–I UR is conserved even when anisotropy is present,
especially for NSs with low compactness.

3.4 f-Love relation

An important tool for studying the oscillation of NSs through observational exploration is
a UR between the non-radial f -mode frequency (a promising source of GWs) and the tidal
deformability (a parameter that can be extracted from the GW data). The exploration
of multi-polar universal relations between the f -mode frequency and tidal deformability of
compact stars was first explored by Chan et al. [45] and further improvised by Pradhan
et al. [46]. Recently, Sotani and Kumar [21] introduced a UR between the quasi-normal modes
and tidal deformability for isotropic NSs. In this work, we calculate the f -Love relations for
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Figure 9. C–I relation with anisotropy parameter βQL = 0 for assumed EOSs. The black-dashed
line is fitted with eq. (3.4). The lower panel shows the residuals for the fitting are calculated.
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Figure 10. Left: same as figure 9, but with βQL = +2. Right: same as figure 9, but with βQL = −2.

anisotropic NSs and perform a least-squares fit using the approximate formula

ω̄ =
n=4∑
n=0

dn(log(Λ))n . (3.5)

The relationship between ω̄ and Λ for βQL = −2, 0,+2 cases are depicted in figures 11–12.
The coefficients (dn) with χ2

r errors are listed in table 2. For positive values of anisotropy,
the errors in χ2

r decrease, indicating that the EOS-insensitive relations become stronger with
the addition of anisotropy. Conversely, for negative values, the errors increase. Therefore,
positive values of anisotropy strengthen the f -Love UR. With the help of tidal deformability
constraints of a canonical mass NS for GW170817 [111] (Λ1.4 = 190+390

−120), and GW190814 [112]
(Λ1.4 = 616+273

−158) events, we establish theoretical limits on the f -mode frequency for each
event with different degrees of anisotropy, utilizing the f -Love URs obtained in this study.
We assume the later event (GW190814) to be a NS-BH merger event as explained in ref. [81]
to support our findings. The pink-dash and orange-dot regions in figure 11–12 represent the
tidal constraints for events GW190814 and GW170817 respectively, and the corresponding
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Figure 11. The f -Love relation for anisotropic NSs with βQL = 0 for various assumed EOSs.
The black-dashed line represents the best fit using eq. (3.5). The light-pink-shaded region and the
orange-shaded region represent the range of canonical tidal deformability data obtained from the
GW190814 [112] and GW170817 [111] papers, respectively.
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Figure 12. Left: same as figure 11, but with βQL = +2. Right: for βQL = −2.

vertical lines represent the values of constrained ω̄. The canonical f -mode frequency imposed
by events GW170817 and GW190814 for different degrees of anisotropy as obtained in this
study is enumerated in table 3.

3.5 Comparison study

We constrain the canonical f -mode frequency for GW170817 [111] and GW190814 [112]
events across different degrees of anisotropy, as outlined in table 3. The canonical f -mode
frequency is also compared with previous studies, focusing on isotropic NS, as listed in
table 4. Notably, the f -mode frequency obtained in this study is approximately 30–35% more
than the findings of Chan et al. [45], Pradhan et al. [46], and Sotani and Kumar [21]. This
difference in the f-mode was anticipated, given that the aforementioned authors employed
a full-GR formalism for their f -mode calculations, in contrast to our use of the Cowling
approximation in this study.
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βQL = −2.0 −1.0 0.0 1.0 +2.0

d0
(
10−1) = 2.001 2.037 2.077 2.131 2.169

d1
(
10−2) = −0.964 −1.998 −2.722 −3.607 −4.158

d2
(
10−2) = −1.857 −1.443 −1.215 −0.874 −0.699

d3
(
10−3) = 3.795 3.207 2.975 2.406 2.260

d4
(
10−4) = −2.155 −1.873 −1.815 −1.538 −1.464

χ2
r

(
10−6) = 4.149 2.311 1.269 0.917 0.735

Table 2. The fitting coefficients are listed for
f -Love relation with −2.0 < βQL < +2.0. The
reduced chi-squared (χ2

r) is also given for all cases.

GW170817 GW190814
βQL ω̄1.4 f1.4 ω̄1.4 f1.4

−2.0 0.121+0.020
−0.022 2.790+0.453

−0.499 0.098+0.006
−0.007 2.265+0.130

−0.157

−1.0 0.116+0.020
−0.021 2.680+0.451

−0.487 0.094+0.005
−0.007 2.168+0.126

−0.152

0.0 0.113+0.020
−0.021 2.606+0.457

−0.484 0.091+0.005
−0.006 2.097+0.124

−0.149

+1.0 0.111+0.020
−0.021 2.550+0.461

−0.481 0.089+0.005
−0.006 2.044+0.123

−0.147

+2.0 0.109+0.020
−0.021 2.508+0.467

−0.482 0.087+0.005
−0.006 2.001+0.122

−0.146

Table 3. The canonical normalized f -mode fre-
quency (ω̄1.4), and f-mode frequency (f1.4 in kHz)
inferred from GW170817 and GW190814 data.

GW170817 GW190814
Ref. f1.4 f1.4

Chan et al.
[45] 2.120+0.445

−0.446 1.652+0.111
−0.130

Pradhan et al.
[46] 2.120+0.444

−0.445 1.653+0.111
−0.130

Sotani and Kumar
[21] 2.124+0.440

−0.446 1.656+0.112
−0.132

This Work 2.606+0.457
−0.484 2.097+0.124

−0.149

Table 4. The canonical f -mode frequency (f1.4 in kHz) inferred from GW170817 and GW190814
data using f -Love UR obtained in different literature for isotropic NS.

4 Conclusion

In this study, we have explored the properties of anisotropic NS with the help of the QL-
model proposed by Horvat et al. [75]. The main motivation for taking the QL-model is
that it ensures that r → 0, the anisotropy must vanish, and in other parts of the star, the
anisotropy must be there. Different fluid conditions are also studied for varieties of EOSs,
and it found that all conditions are perfectly satisfied for the QL model. The speed of sound
is also non-negative with any degree of anisotropicity for the QL-model in comparison to the
BL-model, as mentioned in refs. [90, 95]. Therefore, one can vary the limit of the QL-model
from negative to positive values to calculate various properties of the NS.

Different macroscopic properties of the star have been calculated with different degrees
of anisotropy with the help of a variety EOSs spanning from relativistic to non-relativistic
cases. It has been observed that the magnitude of the macroscopic properties increases
(decreases) for positive (negative) values of βQL. Almost all the considered EOSs satisfy the
different observational limits provided by different observations such as X-ray, pulsar, NICER,
GWs, etc. One can impose strong constraints on them with the help of these observational
data. Furthermore, we found that positive and negative anisotropy affects tidal deformability
parameters and quadrupolar non-radial f -mode frequency significantly, which suggests that
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the star with higher anisotropy sustains more life in the inspiral-merger phase, while the
star with lower anisotropy is more likely to collapse.

In addition, we have studied the I–f–C UR for anisotropic NSs for five values of
βQL = −2.0,−1.0, 0.0,+1.0, and +2.0. This analysis considered almost 60 tabulated EOS-
ensembles spanning a wide range of stiffness, complying with multimessenger constraints.
Moreover, one can use the I–f–C universal relation for anisotropic stars to extract information
about different properties that are not directly observable with current detectors and telescopes.
By varying the anisotropy value, we calculated the I–f , C–f , and C–I universal relations and
fitted them with the polynomial equation using the least-square method. Our results showed
that the reduced chi-square errors for the I–f , C–f , and C–I relations were 5.4863 × 10−6,
2.0599×10−6, and 6.8402×10−6, respectively, for isotropic stars. In addition to the I−f −C

universal relations, we calculated the f -Love universal relation to constrain the canonical
f -mode frequency for anisotropic stars. We observed that the sensitivity of the C–f universal
relation is weaker for anisotropic stars in comparison to the isotropic case. However, the
relation between I–f and f -Love became stronger with increasing anisotropy. The C–I
relation barely changed with the inclusion of anisotropy compared to the other universal
relations. The distribution of f -mode across mass-radius parameter space of NSs as obtained
by utilizing the C–f relation studied for different anisotropic cases.

With the help of various observational data for dimensionless tidal deformability, such as
GW170817 and GW190814, we established a theoretical constraint on the canonical f -mode
frequency for both isotropic and anisotropic stars, which is presented in table 3. As our
main objective in this paper was to analyze variations in I–f–C URs resulting from the
inclusion of anisotropy, we adhered to the Cowling approximation formalism for computing
the f -mode. This choice was necessitated by the absence of a comprehensive and reliable full
GR formalism for determining QNM in anisotropic NSs. Consequently, for compensation,
we calculated constraints on the canonical f -mode frequency for isotropic stars, relying on
URs obtained by researchers in refs. [45, 46, 128], which followed a full-GR formalism, and
summarized the outcomes in table 4. This constraint can be refined by incorporating different
anisotropy models and considering various phenomena such as magnetic fields, quarks in
the core, and dark matter in detail in future work. Therefore, our findings provide avenues
for investigating the various mechanisms that generate anisotropy within compact stars and
for constraining its degree with observational data.
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