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Abstract

A new parameter set is generated for finite and infinite nuclear system within the effective field theory 
motivated relativistic mean field (ERMF) formalism. The isovector part of the ERMF model employed 
in the present study includes the coupling of nucleons to the δ and ρ mesons and the cross-coupling of 
ρ mesons to the σ and ω mesons. The results for the finite and infinite nuclear systems obtained using 
our parameter set are in harmony with the available experimental data. We find the maximum mass of the 
neutron star to be 2.03M� and yet a relatively smaller radius at the canonical mass, 12.69 km, as required 
by the available data.
© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

The nuclear physics inputs are essential in understanding the properties of dense objects like 
neutron stars. The relativistic mean field models based on the effective field theory (ERMF) 
motivated Lagrangian density have been instrumental in describing the neutron star properties, 
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since, the ERMF models enables one to readily include the contributions from various degrees 
of freedoms such as hyperons, kaons and Bose condensates. The model parameters are obtained 
by adjusting them to reproduce the experimental data on the bulk properties for a selected set 
of finite nuclei. However, these parameterizations give remarkable results for bulk properties 
such as binding energy, quadrupole moment, root mean square radius not only for beta stable 
nuclei, but also for nuclei away from the stability line [1,2]. However, the same model, sometimes 
does not appropriately reproduce the behavior of the symmetric nuclear matter and pure neutron 
matter at supra-normal densities as well as those for the pure neutron matter at the sub-saturation 
densities.

The ERMF model usually includes the contributions from the self and cross-couplings of 
isoscalar–scalar σ , isoscalar–vector ω and isovector–vector ρ mesons. The inclusion of various 
self and cross-couplings makes the model flexible to accommodate various phenomena associ-
ated with the finite nuclei and neutron stars adequately without compromising the quality of the 
fit to those data considered a priory. For example, the self-coupling of σ mesons remarkably 
reduces the nuclear matter incompressibility to the desired values [3]. The cross-coupling of ρ
mesons with σ or ω allows one to vary the neutron-skin thickness in a heavy nucleus like 208Pb 
over a wide range [4,5]. These cross-couplings are also essential to produce desired behavior for 
the equation of state of pure neutron matter. Though, the effects are marginal, but, the quantitative 
agreement with the available empirical informations call for them [5,6].

One may also consider the contributions due to the couplings of the meson field gradients 
to the nucleons as well as the tensor coupling of the mesons to the nucleons within the ERMF 
model [2]. These additional couplings are required from the naturalness view point, but very often 
they are neglected. Only the parameterizations of the ERMF model in which the contributions 
from gradient and tensor couplings of mesons to the nucleons considered are the TM1∗, G1 and 
G2 [2,7]. However, these parameterizations display some disconcerting features. For instance, the 
nuclear matter incompressibility and/or the neutron-skin thickness associated with the TM1∗, G1 
and G2 parameter sets are little too large in view of their current estimates based on the measured 
values for the isoscalar giant monopole and the isovector giant dipole resonances in the 208Pb 
nucleus [8,9]. The equation of state (EoS) for the pure neutron matter at sub-saturation densities 
show noticeable deviations with those calculated using realistic approaches.

In the present paper, our motivation is to construct a new parameter set taking into account 
the multiple cross-couplings as well as the addition of δ-meson which are generally ignored. Our 
new parameterization is confronted with the EoS for the symmetric and pure neutron matters 
available from diverse sources which indicate that the proposed parameter set can be employed 
to model the finite nuclei as well as the neutron stars.

The paper is organized as follows. Sec. 2 is devoted to a brief outline of the extended relativis-
tic mean-field model. After getting our newly generated parameter set, we have calculated the 
bulk properties of finite nuclei, nuclear matter and neutron star in Sec. 3. Finally, the concluding 
remarks are given in Sec. 4.

2. The model

Here, we start with the energy density functional for the ERMF model which includes the 
contributions from δ-meson to the lowest order and the cross-coupling between ω and ρ mesons 
which were not considered earlier by TM1∗, G1 and G2 parameterizations. The energy density 
functional can be written as [2,7,10],
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The extended energy density functional with δ-meson contains the nucleons and other exchange 
mesons like σ , ω and ρ-meson and photon Aμ. The effects of the δ-meson to the bulk proper-
ties of finite nuclei are nominal, but, the effects are significant for the highly asymmetric dense 
nuclear matter. The δ-meson splits the effective masses of proton and neutron which influences 
the production of K+,− and π+/π− in the heavy ion collision (HIC) [11]. Also, it increases the 
proton fraction in β-stable matter and modifies the transport properties of neutron star and heavy 
ion reaction [12–14]. Furthermore, in Eq. (1), the terms having gγ , λ, βσ and βω are responsible 
for the effects related with the electromagnetic structure of the pion and nucleon [7]. We need to 
get the constant λ to reproduce the magnetic moments of the nuclei and be defined by

λ = 1

2
λp(1 + τ3) + 1

2
λn(1 − τ3) (2)

with λp = 1.793 and λn = −1.913 the anomalous magnetic moments for the proton and neutron, 
respectively [7].
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Certainly, the pairing correlation plays an important role for open-shell nuclei. The effect 
can not be ignored especially for heavy mass nuclei because the availability of quasi-particles 
states near the Fermi surface. The simple BCS approximation is an appropriate formalism for 
nuclei near the stability line. However, it breaks down for nuclei far away from it. The rea-
son behind such anomaly is the number of protons/neutrons increases as it goes away from the 
stability valley. For such nuclei the Fermi level approaches zero and the number of available 
levels above the Fermi surface decreases. In this situation, the particle–hole and pair excitations 
reach the continuum. To overcome this problem, the BCS formalism is modified [15,16] in an 
approximate manner by including the quasibound states (i.e., states bound by their centrifugal-
plus-Coulomb barrier). In this present calculation, we have used the quasibound-BCS approach 
as done in Ref. [17] to take care of the pairing interaction.

3. Results and discussions

We have calibrated the parameters of the energy density functional as given by Eq. (1). The 
optimization of the energy density functional is performed for a given set of fit data using the 
simulated annealing method. This method allows one to search for the best fit parameter in a 
given domain of the parameter space. The detailed procedure of the parameterization is given 
in Refs. [6,18]. We have fitted the parameters or the coupling constants to the properties of few 
spherical nuclei together with some constraints on the properties of the nuclear matter at the satu-
ration density. The experimental data for the binding energies and the charge radii for 16O, 40Ca, 
48Ca, 68Ni, 90Zr, 100,132Sn and 208Pb nuclei are used to fit the model parameters. The values of 
nuclear matter incompressibility K∞ and symmetry energy coefficient J are constrained within 
210–245 MeV and 28–35 MeV respectively. The parameter ζ0 corresponding to the self-coupling 
of ω mesons is allowed to vary within 1.0–1.5 in order to ensure that the maximum neutron star 
mass is ∼2M�. The obtained parameter set G3 along with other successful parameterizations 
NL3 [19], FSUGold2 [20], FSUGarnet [21] and G2 [7] are compared in Table 1. The NL3 is 
an old parameter set which has been popularly used. It includes self-coupling terms only for σ
mesons and all the cross-coupling terms are ignored. The FSUGold2 and FSUGarnet on the other 
hand in addition includes cross-coupling between ω and ρ mesons as well as the self-coupling 
term for the ω meson. The G2 parameter set includes all the terms present in Eq. (1) except 
those corresponding to the δ-meson and ω–ρ couplings. A detailed account on the importance of 
various couplings can be obtained in Refs. [2,22–24].

The parameters, such as η1, η2, η2ρ, α1, α2, fω have their own importance to explain various 
properties of finite nuclei and nuclear matter. For instance, the surface properties of finite nuclei 
is analyzed through non-linear interactions of η1 and η2 as discussed in Ref. [2]. It is known 
that addition of the isovector δ-meson softens the symmetry energy at subsaturation densities 
and it stiffens the EoS at high densities [25,10]. The δ-meson does not significantly modify the 
properties of finite nuclei, but it affects the maximum mass of the neutron-star and some other 
properties for highly asymmetric systems. Though, relevance of most of these parameters has 
been pointed out in Ref. [2] but, a more quantitative version along this direction, such as the 
uncertainties on the parameters and the correlations among the parameters, needs to be pursued 
within the covariance approach [20,26]. An appropriate covariance analysis for the model con-
sidered in the present work requires a set of fitting data which includes large variety of nuclear 
and neutron star observables. The parameter obtained in the present work will facilitate such an 
investigation.
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Table 1
The obtained new parameter set G3 along with NL3 [19], FSUGold2 [20], FSUGarnet [21] and G2 [7] sets are listed. 
The nucleon mass M is 939.0 MeV. All the coupling constants are dimensionless, except k3 which is in fm−1. The lower 
portion of the table indicates the nuclear matter properties such as binding energy per nucleon E0 (MeV), saturation 
density ρ0 (fm−3), incompressibility coefficient for symmetric nuclear matter K∞ (MeV), effective mass ratio M∗/M , 
symmetry energy J (MeV) and linear density dependence of the symmetry energy L (MeV).

NL3 FSUGold2 FSUGarnet G2 G3

ms/M 0.541 0.530 0.529 0.554 0.559
mω/M 0.833 0.833 0.833 0.832 0.832
mρ/M 0.812 0.812 0.812 0.820 0.820
mδ/M 0.0 0.0 0.0 0.0 1.043
gs/4π 0.813 0.827 0.837 0.835 0.782
gω/4π 1.024 1.079 1.091 1.016 0.923
gρ/4π 0.712 0.714 1.105 0.755 0.962
gδ/4π 0.0 0.0 0.0 0.0 0.160
k3 1.465 1.231 1.368 3.247 2.606
k4 −5.688 −0.205 −1.397 0.632 1.694
ζ0 0.0 4.705 4.410 2.642 1.010
η1 0.0 0.0 0.0 0.650 0.424
η2 0.0 0.0 0.0 0.110 0.114
ηρ 0.0 0.0 0.0 0.390 0.645
η2ρ 0.0 0.401 50.698 0.0 33.250
α1 0.0 0.0 0.0 1.723 2.000
α2 0.0 0.0 0.0 −1.580 −1.468
fω/4 0.0 0.0 0.0 0.173 0.220
fρ/4 0.0 0.0 0.0 0.962 1.239
βσ 0.0 0.0 0.0 −0.093 −0.087
βω 0.0 0.0 0.0 −0.460 −0.484

E0 −16.29 −16.28 −16.23 −16.07 −16.02
ρ0 0.148 0.1505 0.1529 0.153 0.148
K∞ 271.5 238.0 229.5 215.0 243.9
M∗/M 0.595 0.593 0.578 0.664 0.699
J 37.40 37.62 30.95 36.4 31.8
L 118.6 112.9 51.04 100.0 47.3

The computed results for NL3, FSUGold2, FSUGarnet, G2 and G3 are listed in Table 2. The 
binding energy per nucleon (B/A), root mean square charge radius Rc and neutron-skin thickness 
Rn−Rp for some selected nuclei are compared with experimental data, wherever available. From 
the table, it seems that the predictive power of the new set G3 for the nuclei considered in the 
fitting procedure is as good as for the NL3, FSUGold2, FSUGarnet and G2 sets. In Fig. 1 we plot 
the differences between the calculated and experimental binding energies for 70 spherical nuclei 
[29] obtained using different parameter sets. The triangles, stars, squares, diamonds and circles 
are the results for the NL3, FSUGold2, FSUGarnet, G2 and G3 parameterizations, respectively. 
The above results affirm that G3 set reproduces the experimental data better. The rms deviations 
for the binding energy as displayed in Fig. 1 are 2.977, 3.062, 3.696, 3.827 and 2.308 MeV for 
NL3, FSUGold2, FSUGarnet, G2 and G3 respectively. The rms error on the binding energy for 
G3 parameter set is smaller in comparison to other parameter sets.

In Fig. 2, the isotopic shift �r2
c for Pb nucleus is shown. The isotopic shift is defined as 

�r2
c = R2

c (A) − R2
c (208) (fm2), where R2

c (208) and R2
c (A) are the mean square radius of 208Pb 

and Pb isotopes having mass number A. From the figure, one can see that �r2
c increases with 
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Table 2
The binding energy per nucleon B/A (MeV), charge radius Rc (fm) and neutron skin thickness Rn − Rp (fm) for some 
close shell nuclei compared with the NL3, FSUGold2, FSUGarnet, G2 and G3 with experimental data [27,28].

Nucleus Obs. Expt. NL3 FSUGold2 FSUGarnet G2 G3
16O B/A 7.976 7.917 7.862 7.876 7.952 8.037

Rc 2.699 2.714 2.694 2.690 2.718 2.707
Rn − Rp – −0.026 −0.026 −0.028 −0.028 −0.028

40Ca B/A 8.551 8.540 8.527 8.528 8.529 8.561
Rc 3.478 3.466 3.444 3.438 3.453 3.459
Rn − Rp – −0.046 −0.047 −0.051 −0.049 −0.049

48Ca B/A 8.666 8.636 8.616 8.609 8.668 8.671
Rc 3.477 3.443 3.420 3.426 3.439 3.466
Rn − Rp – 0.229 0.235 0.169 0.213 0.174

68Ni B/A 8.682 8.698 8.690 8.692 8.682 8.690
Rc – 3.870 3.846 3.861 3.861 3.892
Rn − Rp – 0.262 0.268 0.184 0.240 0.190

90Zr B/A 8.709 8.695 8.685 8.693 8.684 8.699
Rc 4.269 4.253 4.230 4.231 4.240 4.276
Rn − Rp – 0.115 0.118 0.065 0.102 0.068

100Sn B/A 8.258 8.301 8.282 8.298 8.248 8.266
Rc – 4.469 4.453 4.426 4.470 4.497
Rn − Rp – −0.073 −0.075 −0.078 −0.079 −0.079

132Sn B/A 8.355 8.371 8.361 8.372 8.366 8.359
Rc 4.709 4.697 4.679 4.687 4.690 4.732
Rn − Rp – 0.349 0.356 0.224 0.322 0.243

208Pb B/A 7.867 7.885 7.881 7.902 7.853 7.863
Rc 5.501 5.509 5.491 5.496 5.498 5.541
Rn − Rp – 0.283 0.288 0.162 0.256 0.180

mass number monotonously till A = 208 (�r2
c = 0 for 208Pb) and then gives a sudden kink. It 

was first pointed by Sharma et al. [30], that the non-relativistic parameterization fails to show this 
effect. However, this effect is well explained when a relativistic set like NL-SH [30] is used. The 
NL3, FSUGold2, FSUGarnet, G2 and G3 sets also appropriately predict this shift in Pb isotopes, 
but the agreement with experimental data of the present parameter set G3 is marginally better.

The differences in the rms radii of neutron and proton distribution, �rnp = Rn − Rp , the so-
called neutron-skin thickness are plotted in Fig. 3 for 40Ca to 238U for NL3, FSUGold2, FSUG-
arnet, G2 and G3 parameter sets as a function of proton–neutron asymmetry I = (N − Z)/A. 
The experimental data are also shown in the figure. Trzcińska et al. extracted the neutron-skin 
thickness of 26 stable nuclei ranging from 40Ca to 238U from experiments done with antipro-
tons at CERN [31,32]. Keen observation on the data reveals more or less a linear dependence of 
neutron-skin thickness on the relative neutron excess I of nucleus. This can be fitted by [31–33]

�rnp = (0.90 ± 0.15)I + (−0.03 ± 0.02) fm (3)

Eq. (3) is graphically represented in Fig. 3 by the orange shaded region. Most of the �rnp
obtained with NL3, FSUGold2, and G2 overestimate the data and deviate from the shaded region. 
On the other hand, the �rnp calculated using G3 and FSUGarnet lie in side the shaded region. 
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Fig. 1. (Color online.) Difference between experimental and theoretical binding energies as a function of mass numbers 
for NL3 [19], FSUGold2 [20], FSUGarnet [21], G2 [7] and G3 parameter sets.

Fig. 2. (Color online.) The isotopic shift �rc
2 = R2

c (208) − R2
c (A) (fm2) of Pb isotopes taking Rc of 208Pb as the 

standard value. Calculations with the NL3 [19], FSUGold2 [20], FSUGarnet [21], G2 [7] and G3 parameter sets are 
compared.

Interestingly, larger the asymmetry, more is the overestimation of �rnp by NL3, FSUGold2, 
and G2 parameter sets. The �rnp , calculated using G3 and FSUGarnet parameter sets are in 
harmony with the experimental data. The overestimation of �rnp for NL3, FSUGold2, and G2 
parameter sets is due to the absence (or negligible strength) of ω–ρ cross-coupling [4]. This term 
plays a crucial role in the determination of neutron distribution radius Rn without affecting much 
other properties of finite nuclei. It is shown in Ref. [37] that the derivative of neutron matter 
EoS at a sub-saturation density is strongly correlated with the �rnp. Further, one can readily 
verify that the behavior of the neutron matter EoS should also depend on the incompressibility 
coefficient K∞, since, the energy per nucleon for an asymmetric matter can be decomposed 
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Fig. 3. (Color online.) The difference in neutron and proton rms radii �rnp obtained for NL3, FSUGold2, FSUGarnet, 
G2 and G3 are plotted as a function of isospin asymmetric I = (N − Z)/A. The experimental data displayed are taken 
from [31,32]. The orange shaded region represents Eq. (3).

into that for the symmetric nuclear matter and the density dependent symmetry energy within 
a quadratic approximation. Earlier parameterizations like TM1∗, G1 and G2 corresponding to 
the Lagrangian density similar to the one used in the present work yield higher values of K∞
and/or J . In the present work, we have attempted to improve this shortcoming and constructed 
the force parameter G3 comprising J = 31.8 MeV and K∞ = 243.9 MeV (see Table 2).

Our results for infinite symmetric nuclear and pure neutron matters are shown in Fig. 4. The 
experimental data and predictions of other theoretical approaches are also plotted for compari-
son. Fig. 4(a), displays the energy per neutron in pure neutron matter at sub-saturation densities, 
which are encountered in finite nuclei and in clusterization of nucleons. The results for parameter 
sets NL3, FSUGold2, FSUGarnet and G2 deviate significantly from the shaded region. The non-
relativistic forces labeled as Baldo–Maieron, Friedman, AFDMC are designed for sub-saturated 
matter density, however, they are not tested for the various mass regions of finite nuclei. The 
trend for the energy per neutron in pure neutron matter at low densities obtained by our parame-
ter set G3 passes well through the shaded region. The EoS for symmetric matter and pure neutron 
matter are shown in Fig. 4(b) and Fig. 4(c), respectively for various parameter sets. Except the 
NL3, all other EOSs for the SNM and PNM obtained using FSUGold2, FSUGarnet, G2 and G3 
are passing through the shaded region. Such a study by Arumugam et al. [38] reported that EoS 
at high density overestimates the experimental data in the absence of ω-meson self coupling and 
some cross-couplings.

Finally, we use our parameter set to estimate the mass and radius of the static neutron star com-
posed of neutrons, protons, electrons and muons. The matter is assumed to be in β-equilibrium 
and is charge neutral. The contributions of the crust EoS to the mass and the radius of the neu-
tron star for a given central density are estimated using Ref. [39]. It is shown in Ref. [39] that the 
mass and radius of the core for a given central density together with the chemical potential at the 
core–crust transition density is enough to estimate reasonably well the thickness and the mass 
of the crust. We have used the core–crust transition density to be 0.074 fm−3 and the chemical 
potential at the transition point to be 951.72 MeV, which altogether results in the total maximum 
mass, Mmax = 2.03M�, and the corresponding radius Rmax = 11.03 km. The radius for the neu-
tron star at the canonical mass is R1.4 = 12.69 km. The contribution due to crust to the total mass 
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Fig. 4. (Color online.) (a) The binding energy per neutron as a function of neutron density for G3 force is compared with 
other theoretical calculations along with experimental data [34,35] for the region of sub-saturation density. (b) and (c) are 
the pressure versus baryon density for symmetric nuclear matter and pure neutron matter at high densities, respectively. 
The experimental data for higher density region are taken from [36].

is ∼0.015M� and those for the crust thickness at the maximum and the canonical masses are 
0.39 and 1.06 km, respectively. These values of the crust thicknesses are in harmony with the 
ones obtained in Ref. [40] using appropriate EoSs for the inner and outer crusts. Most of the rela-
tivistic mean-field models, in the absence of δ-mesons, which satisfy the observational constraint 
of 2M� yield R1.4 > 13 km [41]. The model DDHδ [42] which includes the δ-meson contribu-
tions yield R1.4 similar to the ones as presently obtained. Our value of Mmax is consistent with 
maximum mass so far observed for neutron stars like PSR J1614-2230 has M = 1.97 ± 0.04M�
[43] and PSR J0348+0432 has M = 2.01 ± 0.04M� [44]. The value of R1.4 = 12.69 km is also 
in good agreement with the empirical value R1.4 = 10.7–13.1 km, which is consistent with the 
observational analysis and the host of experimental data for finite nuclei [45].

4. Conclusions

In conclusion, we improve the existing parameterizations of the ERMF model which in-
cludes couplings of the meson field gradients to the nucleons and the tensor couplings of the 
mesons to the nucleons in addition to the several self and cross-coupling terms. The nuclear 
matter incompressibility coefficient and/or symmetry energy coefficient associated with earlier 
parameterizations of such ERMF model were little too large which has been taken care in our 
new parameter set G3. The rms error on the total binding energy calculated for our parameter 
set is noticeably smaller than the commonly used parameter sets NL3, FSUGold2, FSUGarnet, 
and G2. The neutron-skin thicknesses for our parameterization calculated for nuclei over a wide 
range of masses are in harmony with the available experimental data. The neutron matter EoS at 
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sub-saturation densities for G3 parameter set show reasonable improvement over other param-
eter sets considered. Our value for the maximum mass for the neutron star is compatible with 
the measurements and the radius of the neutron star with the canonical mass agree quite well 
with the empirical values. The smallness of R1.4 for G3 parameter set in comparison to those for 
the earlier parametrization of the relativistic mean-field models, which are compatible with the 
observational constraint of 2M�, is a desirable feature.

In the upcoming, we will perform a detailed covariance analysis for the model used in the 
present work and assess the uncertainties associated with various parameters. An appropriate 
covariance analysis of our model requires a set of fitting data which includes large variety of nu-
clear and neutron star observables. The G3 parameter obtained in the present work will facilitate 
such an investigation.
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