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We carry out the study of finite nuclei, infinite nuclear matter, and neutron star properties with the newly
developed relativistic force, the Institute of Physics Bhubaneswar-I (IOPB-I). Using this force, we calculate
the binding energies, charge radii, and neutron-skin thickness for some selected nuclei. From the ground-state
properties of superheavy nuclei (Z = 120), it is noticed that considerable shell gaps appear at neutron numbers
N = 172, 184, and 198, manifesting the magicity at these numbers. The low-density behavior of the equation
of state for pure neutron matter is compatible with other microscopic models. Along with the nuclear symmetry
energy, its slope and curvature parameters at the saturation density are consistent with those extracted from various
experimental data. We calculate the neutron star properties with the equation of state composed of nucleons and
leptons in β-equilibrium, which are in good agreement with the x-ray observations by Steiner [Astrophys. J. 722,
33 (2010)] and Nättilä [Astron. Astrophys. 591, A25 (2016)]. Based on the recent observation of GW170817 with a
quasi-universal relation, Rezzolla et al. [Astrophys. J. Lett. 852, L25 (2018)] have set a limit for the maximum mass
that can be supported against gravity by a nonrotating neutron star in the range 2.01 ± 0.04 � M(M�) � 2.16 ±
0.03. We find that the maximum mass of the neutron star for the IOPB-I parametrization is 2.15M�. The radius and
tidal deformability of a canonical neutron star of mass 1.4M� are 13.2 km and 3.9 × 1036 g cm2 s2, respectively.

DOI: 10.1103/PhysRevC.97.045806

I. INTRODUCTION

At present, nuclear physics and nuclear astrophysics are
well described within the self-consistent effective mean-field
models [1]. These effective theories are not only successful
to describe the properties of finite nuclei but also explain the
nuclear matter at supranormal densities [2]. Recently, a large
number of nuclear phenomena were predicted near the nuclear
drip lines within the relativistic and nonrelativistic formalisms
[3–5]. Consequently, several experiments are planned in var-
ious laboratories to probe the deeper side of the unknown
nuclear territories, i.e., the neutron and proton drip lines.
Among the effective theories, the relativistic mean-field (RMF)
model is one of the most successful self-consistent formalisms
that is currently drawning attention to the theoretical studies
of such systems.

Although the construction of the energy density func-
tional for the RMF model is different than those for the
nonrelativistic models, such as Skyrme [6,7] and Gogny
interactions [8], the obtained results for finite nuclei are
in general very close to each other. The same accuracy in
prediction is also valid for the properties of the neutron stars.
At higher densities, the relativistic effects are accounted for
appropriately within the RMF model [9]. In the RMF model
the interactions among nucleons are described through the
exchange of mesons. These mesons are collectively taken
as effective fields and denoted by classical numbers, which
are the quantum mechanical expectation values. In brief, the
RMF formalism is the relativistic Hartree or Hartree-Fock
approximation to the one-boson exchange (OBE) theory of
nuclear interactions. In OBE theory, the nucleons interact with

each other by exchange of isovector π , ρ, and δ mesons and
isoscalars like η, ρ, and ω mesons. The π and η mesons are
pseudo-scalar in nature and do not obey the ground-state parity
symmetry. At the mean-field level, they do not contribute to
the ground-state properties of even nuclei.

The first and simplest successful relativistic Lagrangian
is formed by taking only the contribution of the σ , ω and
ρ mesons into account without any nonlinear term for the
Lagrangian density. This model predicts an unreasonably large
incompressibility K of ∼550 MeV for the infinite nuclear mat-
ter at saturation [9]. To lower the value of K to an acceptable
range, the self-coupling terms in the σ meson are included by
Boguta and Bodmer [10]. Based on this Lagrangian density, a
large number of parameter sets, such as NL1 [11], NL2 [11],
NL-SH [12], NL3 [13], and NL3∗ [14] were calibrated. The ad-
dition of σ -meson self-couplings improved the quality of finite
nuclei properties and incompressibility remarkably. However,
the equations of state at supranormal densities were quite stiff.
Thus, the addition of vector meson self-coupling is introduced
into the Lagrangian density and different parameter sets are
constructed [15–17]. These parameter sets are able to explain
the finite nuclei and nuclear matter properties to a great extent,
but the existence of the Coester band as well as the three-body
effects need to be addressed. Subsequently, nuclear physicists
also changed their way of thinking and introduced different
strategies to improve the result by designing the density-
dependent coupling constants and effective-field-theory-
motivated relativistic mean-field (E-RMF) model [1,18].

Further, motivated by the effective field theory, Furnstahl
et al. [1] used all possible couplings up to fourth order of the
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expansion, exploiting the naive dimensional analysis (NDA)
and naturalness, and obtained the G1 and G2 parameter sets. In
the Lagrangian density, they considered only the contributions
of the isoscalar-isovector cross-coupling, which has a greater
implication for the neutron radius and equation of state (EoS)
of asymmetric nuclear matter [19]. Later on it was realized
that the contributions of δ mesons are also needed to explain
certain properties of nuclear phenomena in extreme conditions
[20,21]. Though the contributions of the δ mesons to the bulk
properties are nominal in normal nuclear matter, the effects are
significant for highly asymmetric dense nuclear matter. The δ
meson splits the effective masses of proton and neutron, which
influences the production of K+,− and π+/π− in the heavy-ion
collision (HIC) [22]. Also, it increases the proton fraction in
the β-stable matter and modifies the transport properties of
the neutron star and heavy-ion reactions [23–25]. The source
terms for both ρ and δ mesons contain isospin density, but their
origins are different. The ρ meson arises from the asymmetry
in the number density and the evolution of the δ meson is
from the mass asymmetry of the nucleons. The inclusion of δ
mesons could influence the certain physical observables like
neutron-skin thickness, isotopic shift, two-neutron separation
energy S2n, symmetry energy S(ρ), giant dipole resonance, and
effective mass of the nucleons, which are correlated with the
isovector channel of the interaction. The density dependence of
symmetry energy is strongly correlated with the neutron-skin
thickness in heavy nuclei, but until now experiments have
not fixed the accurate value of the neutron radius, which
is under consideration for verification in parity-violating
electron-nucleus scattering experiments [18,26].

Recently, the detection of gravitational waves from the
binary neutron star GW170817 is a major breakthrough in
astrophysics and was detected for the first time by the ad-
vanced Laser Interferometer Gravitational-wave Observatory
(aLIGO) and advanced VIRGO detectors [27]. This detection
has certainly proved to be a valuable guidance to study matter
under the most extreme conditions. In-spiraling and coalescing
objects of a binary neutron star result in gravitational waves.
Due to the merger, a compact remnant remains whose nature
is decided by two factors: (i) the masses of the in-spiraling
objects and (ii) the equation of state of the neutron star matter.
For the final state, the formation of either a neutron star or a
black hole depends on the masses and stability of the objects.
The chirp mass is measured very precisely from data analysis
of GW170817 and it is found to be 1.188+0.004

−0.002M� for the 90%
credible intervals. It is suggested that the total mass should
be 2.74+0.04

−0.01M� for low-spin priors and 2.82+0.47
−0.09M� for high-

spin priors [27]. Moreover, the maximum mass of nonspinning
neutron stars (NSs) as a function of radius is observed with
the highly precise measurements of M ≈ 2.0M�. From the

observations of gravitational waves, we can extract information
regarding the radii or tidal deformability of the nonspinning
and spinning NSs [28–30]. Once we succeed in getting this
information, it is easy to get the neutron star matter equation
of state [31,32].

In the present paper, we constructed a new parameter set,
the Institute of Physics Bhubaneswar-I (IOPB-I), using the
simulated annealing method (SAM) [33–35] and explored the
generic prediction of properties of finite nuclei, nuclear matter,
and neutron stars within the E-RMF formalism. Our new
parameter set yields the considerable shell gap appearing at
neutron numbers N = 172, 184, and 198 showing the magicity
of these numbers. The behavior of the density-dependent
symmetry energy of nuclear matter at low and high densities
is examined in detail. The effects of the core EoS on the mass,
radius, and tidal deformability of an NS are evaluated using the
static l = 2 perturbation of a Tolman-Oppenheimer-Volkoff
solution.

The paper is organized as follows: In Sec. II, we outline
the E-RMF Lagrangian. We outline briefly the equations of
motion for finite nuclei and EoS for infinite nuclear matter.
In Sec. III, we discuss the strategy of the parameter fitting
using the SAM. After getting the new parameter set IOPB-I,
the results on binding energy, two-neutron separation energy,
and neutron-skin thickness for finite nuclei are discussed in
Sec. IV A. In Secs. IV B and IV C, the EoS for symmetric and
asymmetric matter are presented. The mass radius and tidal
deformability of the neutron star obtained by the new parameter
set is also discussed in this section. Finally, the summary and
concluding remarks are given in Sec. V. We have taken the
value of G = c = 1 throughout the paper.

II. FORMALISM

A. Energy density functional and equations of motion

In this section, we outline briefly the E-RMF La-
grangian [1]. The beauty of an effective Lagrangian is that
one can ignore the basic difficulties of the formalism, like
renormalization and divergence of the system. The model can
be used directly by fitting the coupling constants and some
masses of the mesons. The E-RMF Lagrangian has an infinite
number of terms with all types of self- and cross-couplings. It
is necessary to develop a truncation procedure for practical use.
Generally, the meson fields constructed in the Lagrangian are
smaller than the mass of the nucleon. Their ratio could be used
as a truncation scheme as is done in Refs. [1,3,36,37] along with
the NDA and naturalness properties. The basic nucleon-meson
E-RMF Lagrangian (with δ meson, WR) up to fourth order
with exchange mesons like σ , ω, and ρ mesons and photon A
is given as [1,38]

E(r) =
∑

α

ϕ†
α(r)

{
−iα · ∇ + β[M − �(r) − τ3D(r)] + W (r) + 1

2
τ3R(r) + 1 + τ3

2
A(r)

− iβα

2M
·
(

fω∇W (r) + 1

2
fρτ3∇R(r)

)}
ϕα(r) +

(
1

2
+ κ3

3!

�(r)

M
+ κ4

4!

�2(r)

M2

)
m2

s

g2
s

�2(r)
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− ζ0

4!

1

g2
ω

W 4(r) + 1

2g2
s

(
1 + α1

�(r)

M

)
(∇�(r))2 − 1

2g2
ω

(
1 + α2

�(r)

M

)

× (∇W (r))2 − 1

2

(
1 + η1

�(r)

M
+ η2

2

�2(r)

M2

)
m2

ω

g2
ω

W 2(r) − 1

2e2
(∇A(r))2 − 1

2g2
ρ

(∇R(r))2

− 1

2

(
1 + ηρ

�(r)

M

)
m2

ρ

g2
ρ

R2(r) − �ω(R2(r)W 2(r)) + 1

2g2
δ

(∇D(r))2 + 1

2

mδ
2

g2
δ

(D2(r)), (1)

where �, W , R, D, and A are the fields; gσ , gω, gρ , gδ , and e2

4π
are the coupling constants; and mσ , mω, mρ , and mδ are the masses

for σ , ω, ρ, and δ mesons and photon, respectively.
Now, our aim is to solve the field equations for the baryons and mesons (nucleon, σ , ω, ρ, and δ) using the variational principle.

We obtained the meson equation of motion using the equation ( ∂E
∂φi

)
ρ=const

= 0. The single-particle energy for the nucleons is

obtained by using the Lagrange multiplier εα , which is the energy eigenvalue of the Dirac equation constraining the normalization
condition

∑
α ϕ†

α(r)ϕα(r) = 1 [39]. The Dirac equation for the wave function ϕα(r) becomes

∂

∂ϕ
†
α(r)

[
E(r) −

∑
α

ϕ†
α(r)ϕα(r)

]
= 0, (2)

i.e., {
−iα · ∇ + β[M − �(r) − τ3D(r)] + W (r) + 1

2
τ3R(r) + 1 + τ3

2
A(r) − iβα

2M
·
[
fω∇W (r) + 1

2
fρτ3∇R(r)

]}
ϕα(r)

= εα ϕα(r). (3)

The mean-field equations for �, W , R, D, and A are given by

−��(r) + m2
s�(r) = g2

s ρs(r) − m2
s

M
�2(r)

(
κ3

2
+ κ4

3!

�(r)

M

)
+ g2

s

2M

(
η1 + η2

�(r)

M

)
m2

ω

g2
ω

W 2(r) + ηρ

2M

g2
s

gρ
2
m2

ρR
2(r)

+ α1

2M
[(∇�(r))2 + 2�(r)��(r)] + α2

2M

g2
s

g2
ω

(∇W (r))2, (4)

−�W (r) + m2
ωW (r) = g2

ω

(
ρ(r) + fω

2
ρT(r)

)
−

(
η1 + η2

2

�(r)

M

)
�(r)

M
m2

ωW (r) − 1

3!
ζ0W

3(r)

+ α2

M
[∇�(r) · ∇W (r) + �(r)�W (r)] − 2 �ωgω

2R2(r)W (r), (5)

−�R(r) + m2
ρR(r) = 1

2
g2

ρ

(
ρ3(r) + 1

2
fρρT,3(r)

)
− ηρ

�(r)

M
m2

ρR(r) − 2 �ωgρ
2R(r)W 2(r), (6)

−�A(r) = e2ρp(r), (7)

−�D(r) + mδ
2D(r) = g2

δ ρs3, (8)

where the baryon, scalar, isovector, proton, and tensor densities are

ρ(r) =
∑

α

ϕ†
α(r)ϕα(r) = ρp(r) + ρn(r) = 2

(2π )3

∫ kp

0
d3k + 2

(2π )3

∫ kn

0
d3k, (9)

ρs(r) =
∑

α

ϕ†
α(r)βϕα(r) = ρsp(r) + ρsn(r) =

∑
α

2

(2π )3

∫ kα

0
d3k

M∗
α(

k2
α + M∗2

α

) 1
2

, (10)

ρ3(r) =
∑

α

ϕ†
α(r)τ3ϕα(r) = ρp(r) − ρn(r), (11)

ρs3(r) =
∑

α

ϕ†
α(r)τ3βϕα(r) = ρps(r) − ρns(r) (12)

ρp(r) =
∑

α

ϕ†
α(r)

(
1 + τ3

2

)
ϕα(r), (13)

ρT(r) =
∑

α

i

M
∇ · [ϕ†

α(r)βαϕα(r)], (14)
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and

ρT,3(r) =
∑

α

i

M
∇ · [ϕ†

α(r)βατ3ϕα(r)]. (15)

Here kα is the nucleon’s Fermi momentum and the summation
is over all the occupied states. The nucleons and mesons
are composite particles and their vacuum polarization effects
have been neglected. Hence, the negative-energy states do
not contribute to the densities and current [11]. In the fitting
process, the coupling constants of the effective Lagrangian
are determined from a set of experimental data which takes
into account the large part of the vacuum polarization effects
in the no-sea approximation. It is clear that the no-sea ap-
proximation is essential to determine the stationary solutions
of the relativistic mean-field equations which describe the
ground-state properties of the nucleus. The Dirac sea holds
the negative-energy eigenvectors of the Dirac Hamiltonian,
which is different for different nuclei. Thus, it depends on the
specific solution of the set of nonlinear RMF equations. The
Dirac spinors can be expanded in terms of vacuum solutions
which form a complete set of plane wave functions in spinor
space. This set will be complete when the states with negative
energies are the part of the positive energy states and create the
Dirac sea of the vacuum.

The effective masses of proton, M∗
p, and neutron, M∗

n , are
written as

M∗
p = M − �(r) − D(r), (16)

M∗
n = M − �(r) + D(r). (17)

The vector potential is

V (r) = gωV0(r) + 1

2
gρτ3b0(r) + e

(1 − τ3)

2
A0(r). (18)

The set of coupled differential equations is solved self-
consistently to describe the ground-state properties of finite
nuclei. In the fitting procedure, we used the experimental data
of binding energy (BE) and charge radius rch for a set of
spherical nuclei (16O, 40Ca, 48Ca, 68Ni, 90Zr, 100,132Sn, and
208Pb). The total binding energy is obtained by

Etotal = Epart + Eσ + Eω + Eρ

+Eδ + Eωρ + Ec + Epair + Ec.m., (19)

where Epart is the sum of the single-particle energies of the
nucleons and Eσ , Eω, Eρ , Eδ , and Ec are the contributions
of the respective mesons and Coulomb fields. The pairing
Epair and the center of mass motion Ec.m. = 3

4 × 41A−1/3 MeV
energies are also taken into account [3,40,41].

The pairing correlation plays a distinct role in open-shell
nuclei [42,43]. The effect of the pairing correlation is markedly
seen with the increase in mass number A. Moreover, it helps in
understanding the deformation of medium and heavy nuclei.
It has a lean effect on both bulk and single-particle properties
of lighter mass nuclei because of the availability of limited
pairs near the Fermi surface. We take the case of the T = 1
channel of pairing correlation, i.e., pairing between proton-
proton and neutron-neutron. The pairs of nucleons are invariant
under time reversal symmetry when the pairing interaction vpair

has nonzero matrix elements:

〈α2α2|vpair|α1α1〉 = −G, (20)

where α = |nljm〉 and α = |nlj − m〉 (with G> 0 and m > 0)
are the quantum states.

A nucleon of quantum states |nljm〉 pairs with another
nucleon having the same Iz value with quantum states |nlj −
m〉, since it is the time reversal partner of the other. In both
nuclear and atomic domains, the ideology of BCS pairing is
the same. The even-odd mass staggering of isotopes was the
first evidence of its kind for the pairing energy. Considering
the mean-field formalism the violation of the particle number
is seen only due to the pairing correlation. We find terms such
as ϕ†ϕ (density) in the RMF Lagrangian density but we put an
embargo on terms of the form ϕ†ϕ† or ϕϕ since they violate
the particle number conservation. Thus, we affirm that BCS
calculations have been carried out by a constant gap or constant
force approach externally in the RMF model [17,44,45]. In
our work, we consider a seniority-type interaction as a tool by
taking a constant value of G for pairs of the active pair shell.

The above approach does not go well for nuclei away from
the stability line because, in the present case, with the increase
in the number of neutrons or protons the corresponding Fermi
level goes to zero and the number of available levels above
it minimizes. To complement this situation we see that the
particle-hole and pair excitations reach the continuum. In
Ref. [6] we notice that if we make the BCS calculation using the
quasiparticle state as in the Hartree-Fock-Bogoliubov (HFB)
calculation, then the BCS binding energies are coming out to
be very close to the HFB, but rms radii (i.e., the single-particle
wave functions) greatly depend on the size of the box where
the calculation is done. This is because of the unphysical
neutron (proton) gas in the continuum where wave functions
are not confined in a region. The above shortcomings of
the BCS approach can be improved by means of the so-
called quasibound states, i.e., states bound because of their
own centrifugal barrier (centrifugal-plus-Coulomb barrier for
protons) [3–5]. Our calculations are done by confining the
available space to one harmonic oscillator shell each above
and below the Fermi level to exclude the unrealistic pairing of
highly excited states in the continuum [3].

B. Nuclear matter properties

1. Energy and pressure density

In static, infinite, uniform, and isotropic nuclear matter,
all the gradients of the fields in Eqs. (4)–(8) vanish. By
the definition of infinite nuclear matter, the electromagnetic
interaction is also neglected. The expressions for energy
density and pressure for such a system are obtained from the
energy-momentum tensor [46]:

Tμν =
∑

i

∂νφi

∂L
∂(∂μφi)

− gμνL. (21)

The zeroth component of the energy-momentum tensor 〈T00〉
gives the energy density and the third component 〈Tii〉
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computes the pressure of the system [38]:

E = 2

(2π )3

∫
d3kE∗

i (k) + ρW + m2
s�

2

g2
s

(
1

2
+ κ3

3!

�

M
+ κ4

4!

�2

M2

)
− 1

2
m2

ω

W 2

g2
ω

(
1 + η1

�

M
+ η2

2

�2

M2

)

− 1

4!

ζ0W
4

g2
ω

+ 1

2
ρ3R − 1

2

(
1 + ηρ�

M

)
m2

ρ

g2
ρ

R2 − �ω(R2W 2) + 1

2

m2
δ

g2
δ

(D2), (22)

P = 2

3(2π )3

∫
d3k

k2

E∗
i (k)

− m2
s�

2

g2
s

(
1

2
+ κ3

3!

�

M
+ κ4

4!

�2

M2

)
+ 1

2
m2

ω

W 2

g2
ω

(
1 + η1

�

M
+ η2

2

�2

M2

)

+ 1

4!

ζ0W
4

g2
ω

+ 1

2

(
1 + ηρ�

M

)
m2

ρ

g2
ρ

R2 + �ω(R2W 2) − 1

2

m2
δ

g2
δ

(D2), (23)

where E∗
i (k) =

√
k2 + M∗

i
2 (i = p,n) is the energy and k is the

momentum of the nucleon. In the context of density functional
theory, it is possible to parametrize the exchange and correla-
tion effects through local potentials (Kohn-Sham potentials), as
long as those contributions are small enough [47]. The Hartree
values control the dynamics in the relativistic Dirac-Brückner-
Hartree-Fock calculations. Therefore, the local meson fields
in the RMF formalism can be interpreted as Kohn-Sham
potentials and in this sense Eqs. (3)–(8) include effects beyond
the Hartree approach through the nonlinear couplings [1].

2. Symmetry Energy

The binding energy per nucleon, E/A = e(ρ,α), can be
written in the parabolic form of the asymmetry parameter
α(= ρn−ρp

ρn+ρp
):

e(ρ,α) = E
ρB

− M = e(ρ) + S(ρ)α2 + O(α4), (24)

where e(ρ) is energy density of the symmetric nuclear matter
(SNM) (α = 0) and S(ρ) is defined as the symmetry energy of
the system:

S(ρ) = 1

2

[
∂2e(ρ,α)

∂α2

]
α=0

. (25)

The isospin asymmetry arises due to the difference in densities
and masses of the neutron and proton. The density-type isospin
asymmetry is taken care by the ρ meson (isovector-vector
meson) and mass asymmetry by the δ meson (isovector-scalar
meson). The general expression for symmetry energy S(ρ) is
a combined expression of ρ and δ mesons, which is defined
as [3,20,48,49]

S(ρ) = Skin(ρ) + Sρ(ρ) + Sδ(ρ), (26)

with

Skin(ρ) = k2
F

6E∗
F

, Sρ(ρ) = g2
ρρ

8m∗2
ρ

, (27)

and

Sδ(ρ) = −1

2
ρ

g2
δ

m2
δ

(
M∗

EF

)2

uδ(ρ,M∗). (28)

The last function uδ is from the discreteness of the Fermi
momentum. This momentum is quite large in nuclear matter

and can be treated as a continuum and continuous system. The
function uδ is defined as

uδ(ρ,M∗) = 1

1 + 3 g2
δ

m2
δ

(
ρs

M∗ − ρ
EF

) . (29)

In the limit of continuum, the function uδ ≈ 1. The whole
symmetry energy (Skin + Spot) arises from ρ and δ mesons
and is given as

S(ρ) = k2
F

6E∗
F

+ g2
ρρ

8m∗2
ρ

− 1

2
ρ

g2
δ

m2
δ

(
M∗

EF

)2

, (30)

where E∗
F is the Fermi energy and kF is the Fermi momentum.

The mass of the ρ meson is modified because of the cross-
coupling of ρ-ω fields and is given by

m∗2
ρ =

(
1 + ηρ

�

M

)
m2

ρ + 2g2
ρ(�ωW 2). (31)

The cross-coupling of isoscalar-isovector mesons (�ω) mod-
ifies the density dependence of S(ρ) without affecting the
saturation properties of the SNM [26,50]. In the numerical cal-
culation, the coefficient of symmetry energy S(ρ) is obtained
by the energy difference of symmetric and pure neutron matter
at saturation. In our calculation, we have taken the isovector
channel into account to make the new parameters, which
incorporate the currently existing experimental observations,
and predictions are made keeping in mind some future aspects
of the model. The symmetry energy can be expanded as a
Taylor series around the saturation density ρ0 as

S(ρ) = J + LY + 1
2KsymY2 + 1

6QsymY3 + O[Y4], (32)

where J = S(ρ0) is the symmetry energy at saturation and
Y = ρ−ρ0

3ρ0
. The coefficients L(ρ0), Ksym(ρ0), and Qsym are

defined as

L = 3ρ
∂S(ρ)

∂ρ

∣∣∣∣
ρ=ρ0

, (33)

Ksym = 9ρ2 ∂2S(ρ)

∂ρ2

∣∣∣∣
ρ=ρ0

, (34)

Qsym = 27ρ3 ∂3S(ρ)

∂ρ3

∣∣∣∣
ρ=ρ0

. (35)

Similarly, we obtain the asymmetric nuclear matter incom-
pressibility as K(α) = K + Kτα

2 + O(α4) and Kτ is given
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by [51]

Kτ = Ksym − 6L − Q0L

K
, (36)

where Q0 = 27ρ3 ∂3(E/ρ)
∂ρ3 in SNM.

Here, L is the slope and Ksym represents the curvature of
S(ρ) at saturation density. A large number of investigations
have been made to fix the values of J , L, and Ksym [50,52–57].
The density dependence of symmetry energy is a key quantity
to control the properties of both finite nuclei and infinite
nuclear matter [58]. Currently, the available information on
symmetry energy J = 31.6 ± 2.66 MeV and its slope L =
58.9 ± 16 MeV at saturation density are obtained by various
astrophysical observations [59]. To date, the precise values of
J , L, and the neutron radii for finite nuclei are not known
experimentally; it is essential to discuss the behavior of the
symmetry energy as a function of density in our new para-
meter set.

III. PARAMETER FITTING

The SAM is used to determine the parameters used in the
Lagrangian density [60,61]. The SAM is useful in the global
minimization technique; i.e., it gives accurate results when
there exists a global minimum within several local minima.
Usually, this procedure is used in a system in which the number
of parameters is more than the number of observables [62–64].
In this simulation method, the system stabilizes when the
temperature T (a variable which controls the energy of the
system) goes down [33–35]. Initially, the nuclear system is put
at a high temperature (highly unstable) and then allowed to cool
down slowly so that it is stabilized in a very smooth way and
finally reaches the frozen temperature (stable or systematic
system). The variation of T should be very small near the
stable state. The χ2 = χ2(p1, . . . ,pN ) values of the considered
systems are minimized (least-squares fit), which is governed
by the model parameters pi . The general expression of χ2 can
be given as

χ2 = 1

Nd − Np

Nd∑
i=1

(
M

expt
i − Mth

i

σi

)2

. (37)

Here, Nd and Np are the numbers of experimental data points
and fitting parameters, respectively. The experimental and
theoretical values of the observables are denoted by M

expt
i and

Mth
i , respectively. The σi’s are the adopted errors [65]. The

adopted errors are composed of three components, namely,
the experimental, numerical, and theoretical errors [65]. As
the name suggests, the experimental errors are associated with
the measurements; numerical and theoretical errors are asso-
ciated with the numerics and the shortcomings of the nuclear
model employed, respectively. In principle, there exists some
arbitrariness in choosing the values of σi , which is partially
responsible for the proliferation of the mean-field models. The
only guidance available from the statistical analysis is that the
χ2 per degree of freedom [Eq. (37)] should be close to unity.
In the present calculation, we used some selected fit data for
binding energy and the root mean square radius of the charge

TABLE I. The obtained new parameter set IOPB-I along with
NL3 [13], FSUGarnet [67], and G3 [21] sets. The nucleon mass M is
939.0 MeV. All the coupling constants are dimensionless except k3,
which is in fm−1.

NL3 FSUGarnet G3 IOPB-I

ms/M 0.541 0.529 0.559 0.533
mω/M 0.833 0.833 0.832 0.833
mρ/M 0.812 0.812 0.820 0.812
mδ/M 0.0 0.0 1.043 0.0
gs/4π 0.813 0.837 0.782 0.827
gω/4π 1.024 1.091 0.923 1.062
gρ/4π 0.712 1.105 0.962 0.885
gδ/4π 0.0 0.0 0.160 0.0
k3 1.465 1.368 2.606 1.496
k4 −5.688 −1.397 1.694 −2.932
ζ0 0.0 4.410 1.010 3.103
η1 0.0 0.0 0.424 0.0
η2 0.0 0.0 0.114 0.0
ηρ 0.0 0.0 0.645 0.0
�ω 0.0 0.043 0.038 0.024
α1 0.0 0.0 2.000 0.0
α2 0.0 0.0 −1.468 0.0
fω/4 0.0 0.0 0.220 0.0
fρ/4 0.0 0.0 1.239 0.0
βσ 0.0 0.0 −0.087 0.0
βω 0.0 0.0 −0.484 0.0

distribution for some selected nuclei and the associated adopted
errors on them [66].

In our calculations, we have built a new parameter set IOPB-
I and analyzed its effects for finite and infinite nuclear systems.
Thus, we performed an overall fit with eight parameters, where
the nucleons as well as the masses of the two vector mesons
in free space are fixed at their experimental values, i.e., M =
939 MeV, mω = 782.5 MeV, and mρ = 763.0 MeV. The effec-
tive nucleon mass can be used as a nuclear matter constraint at
the saturation density ρ0 along with other empirical values like
incompressibility, binding energy per nucleon, and asymmetric
parameter J . While fitting the parameter, the values of effective
nucleon mass M∗/M , nuclear matter incompressibility K , and
symmetry energy coefficient J are constrained within 0.50–
0.90, 220–260, and 28–36 MeV, respectively. The minimum
χ2 is obtained by the simulated annealing method [33–35]
to fix the final parameters. The newly developed IOPB-I
set along with NL3 [13], FSUGarnet [67], and G3 [21] are
given for comparison in Table I. The calculated results of the
binding energy and charge radius are compared with the known
experimental data [68,69]. It is to be noted that in the original
E-RMF parametrization, only five spherical nuclei were taken
into consideration while fitting the parameters with the binding
energy, charge radius, and single-particle energy [1]. However,
here, eight spherical nuclei are used for the fitting as listed in
Table II.

IV. RESULTS AND DISCUSSIONS

In this section we discuss our calculated results for finite
nuclei, infinite nuclear matter, and neutron stars. For finite
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TABLE II. The calculated binding energy per particle (B/A) and
charge radius (Rc) are compared with the available experimental
data [68,69]. The predicted neutron-skin thickness �rnp = Rn − Rp

is also depicted for all four models.

Nucleus Obs. Expt. NL3 FSUGarnet G3 IOPB-I

16O B/A 7.976 7.917 7.876 8.037 7.977
Rc 2.699 2.714 2.690 2.707 2.705

Rn − Rp −0.026 −0.028 −0.028 −0.027
40Ca B/A 8.551 8.540 8.528 8.561 8.577

Rc 3.478 3.466 3.438 3.459 3.458
Rn − Rp −0.046 −0.051 −0.049 −0.049

48Ca B/A 8.666 8.636 8.609 8.671 8.638
Rc 3.477 3.443 3.426 3.466 3.446

Rn − Rp 0.229 0.169 0.174 0.202
68Ni B/A 8.682 8.698 8.692 8.690 8.707

Rc 3.870 3.861 3.892 3.873
Rn − Rp 0.262 0.184 0.190 0.223

90Zr B/A 8.709 8.695 8.693 8.699 8.691
Rc 4.269 4.253 4.231 4.276 4.253

Rn − Rp 0.115 0.065 0.068 0.091
100Sn B/A 8.258 8.301 8.298 8.266 8.284

Rc 4.469 4.426 4.497 4.464
Rn − Rp −0.073 −0.078 −0.079 −0.077

132Sn B/A 8.355 8.371 8.372 8.359 8.352
Rc 4.709 4.697 4.687 4.732 4.706

Rn − Rp 0.349 0.224 0.243 0.287
208Pb B/A 7.867 7.885 7.902 7.863 7.870

Rc 5.501 5.509 5.496 5.541 5.521
Rn − Rp 0.283 0.162 0.180 0.221

nuclei, binding energy, rms radii for neutron and proton
distributions, two-neutron separation energy, and neutron-skin
thickness are analyzed. Similarly, for infinite nuclear matter
systems, the binding energies per particle for symmetric and
asymmetric nuclear matter including pure neutron matter at
both subsaturation and suprasaturation densities are compared
with other theoretical results and experimental data. The
parameter set IOPB-I is also applied to study the structure
of neutron stars using β equilibrium and charge neutrality
conditions.

A. Finite nuclei

1. Binding energies, charge radii, and neutron-skin thickness

We used eight spherical nuclei to fit the experimental
ground-state binding energies and charge radii using the SAM.
The calculated results are listed in Table II and compared with
other theoretical models as well as experimental data [68,69].
It can be seen that the NL3 [13], FSUGarnet [67], and G3 [21]
models successfully reproduce the energies and charge radii
as well. Even though the “mean-field models are not expected
to work well for the light nuclei,” the results deviate only
marginally for the ground-state properties for light nuclei [70].
We noticed that both the binding energy and charge radius of
16O are well produced by IOPB-I. However, the charge radii
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FIG. 1. The neutron-skin thickness as a function of the asymmetry
parameter. Results obtained with the parameter set IOPB-I are
compared with those of the sets NL3 [13], FSUGarnet [67], G3 [21],
and experimental values [76]. The shaded region is calculated using
Eq. (39).

of 40,48Ca slightly underestimate the data. We would like to
emphasize that it is an open problem to mean-field models to
predict the evolution of charge radii of 38−52Ca (see Fig. 3 in
Ref. [71]).

The excess of neutrons gives rise to a neutron-skin thick-
ness. The neutron-skin thickness �rnp is defined as

�rnp = 〈r2〉1/2
n − 〈r2〉1/2

p = Rn − Rp, (38)

with Rn and Rp being the rms radii for the neutron and proton
distributions, respectively. The �rnp, strongly correlated with
the slope of the symmetry energy [72–74], can probe the
isovector part of the nuclear interaction. However, there is
a large uncertainty in the experimental measurement of the
neutron distribution radius of the finite nuclei. The current
values of neutron radius and neutron-skin thickness of 208Pb
are 5.78+0.16

−0.18 and 0.33+0.16
−0.18 fm, respectively [75]. This error bar

is too large to provide significant constraints on the density-
dependent symmetry energy. It is expected that PREX-II result
will give us the neutron radius of 208Pb within 1% accuracy. The
inclusion of some isovector-dependent terms in the Lagrangian
density is needed, which would provide the freedom to refit
the coupling constants within the experimental data without
compromising the quality of fit. The addition of ω-ρ cross-
coupling into the Lagrangian density controls the neutron-skin
thickness of 208Pb as well as that of other nuclei. In Fig. 1, we
show the neutron-skin thickness �rnp for 40Ca to 238U nuclei
as a function of proton-neutron asymmetry I = (N − Z)/A.
The calculated results of �rnp for NL3, FSUGarnet, G3, and
IOPB-I parameter sets are compared with the corresponding
experimental data [76]. Experiments have been done with
antiprotons at CERN and the �rnp are extracted for 26 stable
nuclei ranging from 40Ca to 238U as displayed in the figure
along with the error bars. The trend of the data points shows
approximately linear dependence of neutron-skin thickness on
the relative neutron excess I of a nucleus that can be fitted

045806-7



BHARAT KUMAR, S. K. PATRA, AND B. K. AGRAWAL PHYSICAL REVIEW C 97, 045806 (2018)

by [76,77]:

�rnp = (0.90 ± 0.15)I + (−0.03 ± 0.02) fm. (39)

The values of �rnp obtained with IOPB-I for some of the
nuclei slightly deviate from the shaded region, as can be seen
from Fig. 1. This is because IOPB-I has a smaller strength
of ω-ρ cross-coupling as compared to the FSUGarnet set.
Recently, Fattoyev et al. constrained the upper limit of �rnp �
0.25 fm for the 208Pb nucleus with the help of GW170817
observation data [78]. The calculated values of neutron-skin
thickness for the 208Pb nucleus are 0.283, 0.162, 0.180, and
0.221 fm for the NL3, FSUGarnet, G3, and IOPB-I parameter
sets, respectively. The proton elastic scattering experiment
recently measured neutron-skin thickness �rnp = 0.211+0.054

−0.063

fm for 208Pb [79]. Thus values of �rnp = 0.221 for IOPB-I are
consistent with the recent prediction of neutron-skin thickness.

2. Two-neutron separation energy S2n(Z,N)

The large shell gap in single-particle energy levels is an
indication of the magic number. This is responsible for the
extra stability for the magic nuclei. The extra stability for a
particular nucleon number can be understood from the sudden
fall in the two-neutron separation energy S2n. The S2n can be
estimated by the difference in ground-state binding energies of
two isotopes, i.e.,

S2n(Z,N ) = BE(Z,N ) − BE(Z,N − 2). (40)

In Fig. 2, we display results for the S2n as a function
of neutron numbers for Ca, Ni, Zr, Sn, Pb, and Z = 120
isotopic chains. The calculated results are compared with the
finite range droplet model (FRDM) [80] and the most recent
experimental data [68]. From the figure, it is clear that there
is an evolution of magicity as one moves from the valley of
stability to the drip line. In all cases, the S2n values decrease
gradually with increase in neutron number. The experimental
manifestation of large shell gaps at neutron numbers N = 20,
28 (Ca), 28 (Ni), 50 (Zr), 82 (Sn), and 126(Pb) are reasonably
well reproduced by the four relativistic sets. Figure 2 shows
that the experimental S2n of 50−52Ca are in good agreement
with the prediction of the NL3 set. It is interesting to note
that all sets predict the subshell closure at N = 40 for Ni
isotopes. Furthermore, the two-neutron separation energy for
the isotopic chain of nuclei with Z = 120 is also displayed
in Fig. 2. For the isotopic chain of Z = 120, no experimental
information exists. The only comparison can be made with
theoretical models such as the FRDM [68]. At N = 172,
184, and 198 sharp falls in separation energy are seen for
all forces, which have been predicted by various theoretical
models in the superheavy mass region [81–84]. It is to be noted
that the isotopes with Z = 120 are shown to be spherical in
their ground state [84]. In a detailed calculation, Bhuyan and
Patra, using both RMF and Skyrme-Hartree-Fock formalisms,
predicted that Z = 120 could be the next magic number after
Z = 82 in the superheavy region [85]. Thus, the deformation
effects may not affect the results for Z = 120. Therefore, a
future mass measurement of 292,304,318120 would confirm a
key test for the theory, as well as direct information about the
closed-shell behavior at N = 172, 184, and 198.
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FIG. 2. The two-neutron separation energy as a function of neu-
tron number for the isotopic series of Ca, Ni, Zr, Sn, and Pb nuclei with
NL3 [13], FSUGarnet [67], G3 [21], FRDM [80], and experimental
data [68] whenever available. The dotted circle represents the magicity
of the nuclei.

B. Infinite nuclear matter

The nuclear incompressibility K determines the extent
to which the nuclear matter can be compressed. This plays
an important role in the nuclear EoS. Currently, the ac-
cepted value of K = 240 ± 20 MeV was determined from
isoscalar giant monopole resonance (ISGMR) for 90Zr and
208Pb nuclei [86,87]. For our parameter set IOPB-I, we get
K = 222.65 MeV. The density-dependent symmetry energy
S(ρ) is determined from Eq. (32) using IOPB-I along with
three adopted models. The calculated results of the symmetry
energy coefficient (J ), the slope of symmetry energy (L), and
other saturation properties are listed in Table III. We find
that in case of IOPB-I, J = 33.3 MeV and L = 63.6 MeV.
These values are compatible with J = 31.6 ± 2.66 MeV and
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TABLE III. The nuclear matter properties such as binding energy
per nucleon, E0 (MeV), saturation density ρ0 (fm−3), incompress-
ibility coefficient for symmetric nuclear matter K (MeV), effective
mass ratio M∗/M , symmetry energy J (MeV), and linear density
dependence of the symmetry energy, L (MeV), at saturation.

NL3 FSUGarnet G3 IOPB-I

ρ0 (fm−3) 0.148 0.153 0.148 0.149
E0 (MeV) −16.29 −16.23 −16.02 −16.10
M∗/M 0.595 0.578 0.699 0.593
J (MeV) 37.43 30.95 31.84 33.30
L (MeV) 118.65 51.04 49.31 63.58
Ksym (MeV) 101.34 59.36 −106.07 −37.09
Qsym (MeV) 177.90 130.93 915.47 862.70
K (MeV) 271.38 229.5 243.96 222.65
Q0 (MeV) 211.94 15.76 −466.61 −101.37
Kτ (MeV) −703.23 −250.41 −307.65 −389.46
Kasy (MeV) −610.56 −246.89 −401.97 −418.58
Ksat2 (MeV) −703.23 −250.41 −307.65 −389.46

L = 58.9 ± 16 MeV obtained by various terrestrial experi-
mental information and astrophysical observations [59].

Another important constraint Kτ has been suggested which
lies in the range of −840 to −350 MeV [88–90] by various
experimental data on isoscalar giant monopole resonance,
which we can calculate from Eq. (36). It is to be noticed that
the calculated values of Kτ are −703.23, −250.41, −307.65,
and −389.46 MeV for NL3, FSUGarnet, G3, and IOPB-I
parameter sets, respectively. The ISGMR measurement was
investigated in a series of 112−124Sn isotopes, which extracted
the value of Kτ = −395 ± 40 MeV [91]. It is found that
Kτ = −389.46 MeV for the IOPB-I set is consistent with GMR
measurements [91]. In the absence of cross-coupling, S(ρ) of
NL3 is stiffer at low- and high-density regimes, as displayed
in Fig. 3. Alternatively, the presence of cross-coupling of ρ
mesons to the ω (in the case of FSUGarnet and IOPB-I) and
σ mesons (in case of G3) yields the softer symmetry energy
at low density, which is consistent with HIC Sn+Sn [93] and
IAS [92] data as shown in the figure. However, the IOPB-I
set has softer S(ρ) in comparison to the NL3 parameter set at
higher density, which lies inside the shaded region of ASY-EoS
experimental data [94].

Next, we display in Fig. 4 the binding energy per neutron
(B/N) as a function of the neutron density. Here, special
attention is needed to build a nucleon-nucleon interaction to
fit the data at subsaturation density. For example, the EoS of
pure neutron matter (PNM) at low density is obtained within
the variational method, which is obtained with an Urbana
v14 interaction [96]. In this regard, the effective mean-field
models also fulfill this demand to some extent [21,67,100].
The cross-coupling ω-ρ plays an important role at low density
of the PNM. The low-density (zoomed pattern) nature of the
FSUGarnet, G3, and IOPB-I sets are in harmony with the
results obtained by microscopic calculations [53,95–98], while
the results for NL3 deviate from the shaded region at low-
as well as high-density regions. We also find a very good
agreement for FSUGarnet, G3, and IOPB-I sets at higher
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FIG. 3. Density-dependent symmetry energy from Eq. (32) with
different E-RMF parameter sets along with IOPB-I parametrization.
The shaded region is the symmetry energy from IAS [92], HIC
Sn+Sn [93], and ASY-EoS experimental data [94]. The zoomed
pattern of the symmetry energy at low densities is shown in the inset.

densities, which have been obtained with chiral two-nucleon
(NN ) and three-nucleon (3N ) interactions [99].

In Fig. 5, we show the calculated pressure P for the
SNM and PNM with the baryon density for the four E-RMF
models, which then are compared with the experimental flow
data [101]. It is seen from Fig. 5(a) that the SNM EoS for
the G3 parameter set is in excellent agreement with the flow
data for the entire density range. The SNM EoS for the
FSUGarnet and IOPB-I parameter sets are also compatible
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FIG. 4. The energy per neutron as a function of neutron density
with NL3 [13], FSUGarnet [67], G3 [21], and IOPB-I parameter sets.
Other curves and shaded regions represent the results for various
microscopic approaches such as Baldo-Maieron [95], Friedman [96],
auxiliary-field diffusion Monte Carlo [97], Dutra [53], Gezerlis [98],
and Hebeler [99] methods.
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FIG. 5. Pressure as a function of baryon density for the IOPB-I
force. The results with NL3 [13], FSUGarnet [67], and G3 [21], are
compared with the EoS extracted from the analysis [101] for the (a)
symmetric nuclear matter (SNM) and (b) pure neutron matter (PNM).

with the experimental HIC data but they are stiffer relative
to the EoS for the G3 parametrization. In Fig. 5(b), the bounds
on the PNM EoS are divided into two categories: (i) the
upper one corresponds to a strong density dependence of
symmetry energy S(ρ) (HIC-Asy Stiff) and (ii) the lower one
corresponds to the weakest S(ρ) (HIC-Asy Soft) [101,102].
Our parameter set IOPB-I along with the G3 and FSUGarnet
sets are reasonably in good agreement with experimental flow
data. The PNM EoS for the IOPB-I model is quite stiffer than
that of G3 at high densities.

C. Neutron stars

1. Predicted equation of states

We have solved Eqs. (22) and (23) for the energy density
and pressure of the β-equilibrated charge neutral neutron star
matter. Figure 6 displays the pressure as a function of energy
density for the IOPB-I set along with the NL3, FSUGarnet, and
G3 sets. The solid circles are the central pressure and energy
density corresponding to the maximum mass of the neutron
star obtained from the above equations of state. The shaded
region of the EoS can be divided into two parts as follows:

(i) Nättliä et al. applied the Bayesian cooling tail method
to constrain (1σ and 2σ confidence limit) the EoS of
cold dense matter inside the neutron stars [103].

(ii) Steiner et al. determined an empirical dense matter
EoS with a 95% confidence limit from a heterogeneous
data set containing PRE bursts and quiescent thermal
emission from x-ray transients [104].

From Fig. 6, it is clear that IOPB-I and FSUGarnet EoSs
are similar at high density but they differ remarkably at low
densities as shown in the zoomed area of the inset. The NL3
set yields the stiffer EoS. Moreover, the IOPB-I set shows the
stiffest EoS up to energy densities E � 700 MeV fm−3. It can
be seen that the results of IOPB-I at very high densities E ∼
400–1600 MeV fm−3 are consistent with the EoS obtained
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FIG. 6. The equations of statewith NL3, FSUGarnet, G3, and
IOPB-I sets for nuclear matter under charge neutrality as well as
the β-equilibrium condition. The shaded region (violet) represents
the observational constraint at rph = R with uncertainty of 2σ [104].
Here, R and rph are the neutron star radius and the photospheric radius,
respectively. The other shaded region (red and orange) represents the
QMC+Model A equation of state of cold dense matter with 95%
confidence limit [103]. The region zoomed near the origin is shown
in the inset.

by Nättilä et al. and Steiner et al. [103,104]. However, the
FSUGarnet set has a softer EoS at low energy densities E �
200 MeV fm−3 and stiffer EoS at intermediate energy densities
as compared to that for the G3 set. One can conclude from
Table III that the symmetry energy elements L and Ksym are
smaller in the G3 model compared to the IOPB-I, FSUGarnet,
and NL3 sets. Hence, it yields the symmetry energy that is
softer at higher density.

2. Mass radius and tidal deformability of neutron star

After fixing the equation of state for the various parameter
sets, we extended our study to calculate the mass, radius,
and tidal deformability of a nonrotating neutron star. Placing
a spherical star in a static external quadrupolar tidal field
Eij results in deformation of the star along with quadrupole
deformation, which is the leading order perturbation. Such a
deformation is measured by [30]

λ = −Qij

Eij

= 2

3
k2R

5, (41)

� = 2k2

3C5
, (42)

where Qij is the induced quadrupole moment of a star in binary,
and Eij is the static external quadrupole tidal field of the com-
panion star. λ is the tidal deformability parameter depending on
the EoS via both the NS radius and a dimensionless quantity k2,
called the second Love number [28,30]. � is the dimensionless
version of λ, and C is the compactness parameter (C = M/R).
However, in general relativity (GR) we have to distinguish k2

between gravitational fields generated by masses (electric type)
and those generated by the motion of masses, i.e., mass currents
(magnetic type) [32,105]. The electric tidal Love number is
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found from the following expression [30]:

k2 = 8

5
(1 − 2C)2C5[2C(y − 1) − y + 2]

{
2C(4(y + 1)C4

+ (6y − 4)C3 + (26 − 22y)C2 + 3(5y − 8)C − 3y + 6)

− 3(1 − 2C)2(2C(y − 1) − y + 2) log

(
1

1 − 2C

)}−1

.

(43)

The value of y ≡ y(R) can be computed by solving the
following first order differential equation [29,32]:

r
dy(r)

dr
+ y(r)2 + y(r)F (r) + r2Q(r) = 0, (44)

with

F (r) = r − 4πr3[E(r) − P (r)]

r − 2M(r)
, (45)

Q(r) =
4πr

(
5E(r) + 9P (r) + E(r)+P (r)

∂P (r)/∂E(r) − 6
4πr2

)
r − 2M(r)

− 4

[
M(r) + 4πr3P (r)

r2(1 − 2M(r)/r)

]2

. (46)

To estimate the tidal deformability λ of a single star,
Eq. (44) must be integrated simultaneously with the Tolman-
Oppenheimer-Volkov equations [106], i.e.,

dP (r)

dr
= − [E(r) + P (r)][M(r) + 4πr3P (r)]

r2
(
1 − 2M(r)

r

) , (47)

and
dM(r)

dr
= 4πr2E(r). (48)

For a given EoS and from the boundary conditions P (0) = Pc,
M(0) = 0, and y(0) = 2, where Pc, M(0), and y(0) are the
central pressure, mass, and dimensionless quantity. To obtain
the tidal Love number, we solve this set of Eqs. (41)–(48)
for a given EoS of the star at r = 0. The value of r(=R)
where the pressure vanishes defines the surface of the star.
Thus, at each central density we can uniquely determine a
mass M , a radius R, and a tidal Love number k2 of the isolated
neutron star using the chosen EoS. In Fig. 7, the horizontal
bars in cyan and magenta include the results from the precisely
measured neutron stars masses, such as PSR J1614-2230 with
mass M = 1.97 ± 0.04M� [107] and PSR J0348+0432 with
M = 2.01 ± 0.04M� [108]. These observations imply that the
maximum mass predicted by any theoretical model should
reach the limit ∼2.0M�. We also depict the 1σ and 2σ
empirical mass-radius constraints for the cold dense matter
inside the NS, which were obtained from a Bayesian analysis
of type-I x-ray burst observations [103]. A similar approach
was applied by Steiner et al., but they obtained the mass radius
from six sources, i.e., three from transient low-mass x-ray
binaries and three from type-I x-ray bursters with photospheric
radius [104].

The NL3 model of RMF theory suggests a larger and mas-
sive NS with mass 2.77M� and the corresponding NS radius to
be 13.314 km, which is larger than the best observational radius

7 8 9 10 11 12 13 14 15 16

0.4

0.8

1.2

1.6

2

2.4

2.8 NL3
FSUGarnet
G3
IOPB-I

PSR J0348+0432
PSR J1614-2230
4U 1820-30
EXO 1745-248
4U 1608-52

Steiner

Guillot

R(km)

M
(M

O
).

Nattila.. ..

FIG. 7. The mass-radius profile predicted by NL3, FSUGarnet,
G3, and IOPB-I parameter sets. The recent observational constraints
on neutron-star masses [107,108] and radii [103,104,116,117] are also
shown.

estimates [103,104]. Hence it is clear that the new RMF was
developed either through density-dependent couplings [49]
or higher order couplings [21,67]. These models successfully
reproduce the ground-state properties of finite nuclei, nuclear
matter saturation properties, and also the maximum mass of the
neutron stars. Another important advantage of these models is
that they are consistent with the subsaturation density of the
pure neutron matter. Rezzolla et al. [109] combined the recent
gravitational-wave observation of a merging system of binary
neutron stars via the event GW170817 with quasi-universal
relations between the maximum mass of rotating and nonrotat-
ing NSs. It is found that the maximum mass for a nonrotating
NS should be in the range 2.01 ± 0.04 � M(M�) � 2.16 ±
0.03 [109], where the lower limit is observed from massive
pulsars in the binary system [108]. From the results, we find
that the maximum masses for IOPB-I along with FSUGarnet
and G3 EoS are consistent with the observed lower bound
on the maximum NS mass. For the IOPB-I parametrization,
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FIG. 8. The tidal deformability λ as a function of neutron star
mass with different EoS.
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TABLE IV. The binary neutron star masses (m1(M�),m2(M�)) and corresponding radii (R1 (km), R2 (km)), tidal Love number ((k2)1, (k2)2),
and tidal deformabilities (λ1,λ2) in 1 × 1036 g cm2 s2 and dimensionless tidal deformabilities (�1,�2). �̃, δ�̃, Mc(M�), and Rc(km) are the
dimensionless tidal deformability, tidal correction, chirp mass, and radius of the binary neutron star, respectively.

EoS m1(M�) m2(M�) R1 (km) R2 (km) (k2)1 (k2)2 λ1 λ2 �1 �2 �̃ δ�̃ Mc(M�) Rc(km)

NL3 1.20 1.20 14.702 14.702 0.1139 0.1139 7.826 7.826 2983.15 2983.15 2983.15 0.000 1.04 10.350
1.50 1.20 14.736 14.702 0.0991 0.1139 6.889 7.826 854.06 2983.15 1608.40 220.223 1.17 10.214
1.25 1.25 14.708 14.708 0.1118 0.1118 7.962 7.962 2388.82 2388.82 2388.82 0.000 1.09 10.313
1.30 1.30 14.714 14.714 0.1094 0.1094 7.546 7.546 1923.71 1923.71 1923.71 0.000 1.13 10.271
1.35 1.35 14.720 14.720 0.1070 0.1070 7.393 7.393 1556.84 1556.84 1556.84 0.000 1.18 10.224
1.35 1.25 14.720 14.708 0.1070 0.1118 7.393 7.962 1556.84 2388.82 1930.02 91.752 1.13 10.268
1.37 1.25 14.722 14.708 0.1061 0.1118 7.339 7.962 1452.81 2388.82 1863.78 100.532 1.14 10.271
1.40 1.20 14.726 14.702 0.1044 0.1139 7.231 7.826 1267.07 2983.15 1950.08 183.662 1.13 10.262
1.40 1.40 14.726 14.726 0.1044 0.1044 7.231 7.231 1267.07 1267.07 1267.07 0.000 1.22 10.174
1.42 1.29 14.728 14.712 0.1031 0.1099 7.147 7.572 1145.72 1994.02 1515.18 95.968 1.18 10.192
1.44 1.39 14.730 14.724 0.1027 0.1049 7.120 7.259 1108.00 1311.00 1204.83 19.212 1.23 10.179
1.45 1.45 14.732 14.732 0.1018 0.1018 7.064 7.064 1037.13 1037.13 1037.13 0.000 1.26 10.124
1.54 1.26 14.740 14.708 0.0969 0.1114 6.741 7.668 729.95 2303.95 1308.91 168.202 1.21 10.179
1.60 1.60 14.746 14.746 0.0937 0.0937 6.532 6.532 589.92 589.92 589.92 0.000 1.39 9.979

FSUGarnet 1.20 1.20 12.944 12.944 0.1090 0.1090 3.961 3.961 1469.32 1469.32 1469.32 0.000 1.04 8.983
1.50 1.20 12.972 12.944 0.0893 0.1090 3.282 3.961 408.91 1469.32 784.09 111.643 1.17 8.847
1.25 1.25 12.958 12.958 0.1062 0.1062 3.880 3.880 1193.78 1193.78 1193.78 0.000 1.09 8.977
1.30 1.30 12.968 12.968 0.1030 0.1030 3.777 3.777 945.29 945.29 945.29 0.000 1.13 8.910
1.35 1.35 12.974 12.974 0.0998 0.0998 3.666 3.666 761.13 761.13 761.13 0.000 1.18 8.860
1.35 1.25 12.974 12.958 0.0998 0.1062 3.666 3.880 761.13 1193.78 955.00 49.744 1.13 8.920
1.37 1.25 12.976 12.958 0.0986 0.1062 3.629 3.880 710.62 1193.78 922.54 53.853 1.14 8.924
1.40 1.20 12.978 12.944 0.0965 0.1090 3.552 3.961 622.06 1469.32 959.22 90.970 1.13 8.904
1.40 1.40 12.978 12.978 0.0965 0.0965 3.552 3.552 622.06 622.06 622.06 0.000 1.22 8.825
1.42 1.29 12.978 12.966 0.0949 0.1038 3.495 3.803 565.47 1001.18 755.10 50.492 1.18 8.867
1.44 1.39 12.978 12.978 0.0939 0.0973 3.456 3.582 531.54 653.60 589.65 14.148 1.23 8.823
1.45 1.45 12.978 12.978 0.0931 0.0931 3.427 3.427 507.70 507.70 507.70 0.000 1.26 8.776
1.54 1.26 12.964 12.960 0.0862 0.1057 3.157 3.864 343.73 1146.73 638.35 88.892 1.21 8.817
1.60 1.60 12.944 12.944 0.0816 0.0816 2.964 2.964 266.20 266.20 266.20 0.000 1.39 8.511

G3 1.20 1.20 12.466 12.466 0.1034 0.1034 3.114 3.114 1776.65 1776.65 1776.65 0.000 1.04 9.331
1.50 1.20 112.360 12.466 0.0800 0.1034 2.309 3.114 284.92 1776.65 803.43 191.605 1.17 8.890
1.25 1.25 12.460 12.460 0.1001 0.1001 3.007 3.007 939.79 939.79 939.79 0.000 1.09 8.557
1.30 1.30 12.448 12.448 0.0962 0.0962 2.875 2.875 728.07 728.07 728.07 0.000 1.13 8.457
1.35 1.35 12.434 12.434 0.0925 0.0925 2.750 2.750 582.26 582.26 582.26 0.000 1.18 8.398
1.35 1.25 12.434 12.460 0.0925 0.1001 2.750 3.007 582.26 939.79 742.29 43.064 1.13 8.482
1.37 1.25 12.428 12.460 0.0909 0.1001 2.696 3.007 530.66 939.79 709.72 49.144 1.14 8.468
1.40 1.20 12.416 12.466 0.0859 0.1034 2.613 3.114 461.03 1776.65 976.80 183.274 1.13 8.937
1.40 1.40 12.416 12.416 0.0859 0.0859 2.613 2.613 461.03 461.03 461.03 0.000 1.22 8.312
1.42 1.29 12.408 12.450 0.0868 0.0972 2.553 2.905 417.96 772.17 571.87 43.226 1.18 8.387
1.44 1.39 12.398 12.420 0.0854 0.0894 2.501 2.643 384.42 484.90 432.22 12.671 1.23 8.292
1.45 1.45 12.932 12.392 0.0846 0.0846 2.472 2.472 367.04 367.04 367.04 0.000 1.26 8.225
1.54 1.26 12.334 12.458 0.0769 0.0992 2.194 2.976 239.49 883.46 474.83 75.175 1.21 8.311
1.60 1.60 12.280 12.280 0.0716 0.0716 2.000 2.000 179.63 179.63 179.63 0.000 1.39 7.867

IOPB-I 1.20 1.20 13.222 13.222 0.1081 0.1081 4.369 4.369 1654.23 1654.23 1654.23 0.000 1.04 9.199
1.50 1.20 13.236 13.222 0.0894 0.1081 3.631 4.369 449.62 1654.23 875.35 128.596 1.17 9.044
1.25 1.25 13.230 13.230 0.1053 0.1053 4.268 4.268 1310.64 1310.64 1310.64 0.000 1.09 9.146
1.30 1.30 13.238 13.238 0.1024 0.1024 4.162 4.162 1053.07 1053.07 1053.07 0.000 1.13 9.105
1.35 1.35 13.240 13.240 0.0995 0.0995 4.050 4.050 857.53 857.53 857.53 0.000 1.18 9.074
1.35 1.25 13.240 13.230 0.0995 0.1053 4.050 4.268 857.53 1310.64 1060.81 49.565 1.13 9.110
1.37 1.25 13.242 13.230 0.0938 0.1053 4.004 4.268 791.92 1310.64 1019.60 56.371 1.14 9.104
1.40 1.20 13.242 13.222 0.0960 0.1081 3.911 4.369 680.79 1654.23 1067.64 107.340 1.13 9.097
1.40 1.40 13.242 13.242 0.0960 0.0960 3.911 3.911 680.79 680.79 680.79 0.000 1.22 8.986
1.42 1.29 13.242 13.236 0.0949 0.1030 3.864 4.184 632.31 1099.78 835.91 52.836 1.18 9.049
1.44 1.39 13.242 13.242 0.0935 0.0969 3.806 3.946 578.47 719.80 645.73 17.094 1.23 8.985
1.45 1.45 13.240 13.240 0.0927 0.0927 3.771 3.771 549.06 549.06 549.06 0.000 1.26 8.915
1.54 1.26 13.230 13.232 0.0868 0.1047 3.516 4.247 384.65 1253.00 703.58 94.735 1.21 8.991
1.60 1.60 13.212 12.212 0.0823 0.0823 3.314 3.314 296.81 296.81 296.81 0.000 1.39 8.698
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the maximum mass of the NS is 2.15M� and the radius
(without including crust) of the canonical mass is 13.242 km,
which is relatively larger as compared to the current x-ray
observation radii of range 10.5–12.8 km by Nättilä et al. [103]
and 11–12 km by Steiner et al. [104]. Similarly, FSUGarnet
fails to qualify radius constraint. However, recently Annala
et al. suggested that the radius of a 1.4M� star should be in
the range 11.1 � R1.4M� � 13.4 km [110], which is consistent
with the IOPB-I and FSUGarnet sets. Furthermore, the G3 EoS
is relatively softer at energy density E � 200 MeV fm−3 (see
in Fig. 6), which is able to reproduce the recent observational
maximum mass of 2.0M� as well as the radius of the canonical
neutron star mass of 12.416 km.

Now we move to results for the tidal deformability of the sin-
gle neutron star as well as binary neutron stars (BNSs), which
was recently discussed for GW170817 [27]. Equation (41)
indicates that λ strongly depends on the radius of the NS as
well as on the value of k2. Moreover, k2 depends on the internal
structure of the constituent body and directly enters into the
gravitational wave phase of in-spiraling BNSs, which in turn
conveys information about the EoS. As the radii of the NS
increases, the deformation by the external field becomes large
as there will be an increase in gravitational gradient with the
simultaneous increase in radius. In other words, stiff (soft) EoS
yields large (small) deformation in the BNS system. Figure 8
shows the tidal deformability as a function of NS mass. In
particular, λ takes a wide range of values λ ∼ (1–8) × 1036

g cm2 s2 as shown in Fig. 8. For the G3 parameter set, the tidal
deformability λ is very low in the mass region 0.5M�–2.0M�
in comparison with other sets. This is because the star exerts
high central pressure and energy density, resulting in the
formation of a compact star which is shown as solid dots
in Fig. 6. However, for the NL3 EoS case, it turns out that,
because of the stiffness of the EoS, the λ value is increasing.
The tidal deformabilities of the canonical NS (1.4M�) of
IOPB-I along with FSUGarnet and G3 EoSs are found to
be 3.191 × 1036, 3.552 × 1036, and 2.613 × 1036 g cm2 s2,
respectively, as shown in Table IV, which are consistent with
the results obtained by Steiner et al. [111].

Next, we discuss the weighted dimensionless tidal de-
formability of the BNS of mass m1 and m2 which is defined
as [27,112,113]

�̃ = 8

13
[(1 + 7η − 31η2)(�1 + �2) +

√
1 − 4η

× (1 + 9η − 11η2)(�1 − �2)], (49)

with tidal correction

δ�̃ = 1

2

[√
1 − 4η

(
1 − 13272

1319
η + 8944

1319
η2

)
(�1 + �2)

+
(

1 − 15910

1319
η + 32850

1319
η2 + 3380

1319
η3

)
(�1 − �2)

]
.

(50)

Here, η = m1m2/M
2 is the symmetric mass ratio, m1 and

m2 are the binary masses, M = m1 + m2 is the total mass,
and �1 and �2 are the dimensionless tidal deformabilities of
the BNS, for the case m1 � m2. Also, we have taken equal

0 500 1000 1500 20000

500

1000

1500

2000

Λ1

Λ
2

50%

90%
FSUGarnet

G3

IOPB-I

NL3

FIG. 9. Different values of � generated by using IOPB-I along
with NL3, FSUGarnet, and G3 EoS are compared with the 90% and
50% probability contour in the case of low spin, |χ | � 0.05, as given
in Fig. 5 of GW170817 [27].

and unequal masses (m1 and m2) for the BNS system as has
been done in Refs. [114,115]. The calculated results for the
�1, �2, and weighted tidal deformability �̃ of the present
EoS are displayed in Table IV. In Fig. 9, we display the
different dimensionless tidal deformabilities corresponding to
progenitor masses of the NS. It can be seen that the IOPB-I
set along with FSUGarnet and G3 sets are in good agreement
with the 90% and 50% probability contour of GW170817 [27].
Recently, aLIGO and VIRGO detectors measured a value of
�̃ whose results are more precise than the results found by
considering the individual values of�1 and�2 of the BNS [27].
It is noticed that the values of �̃ � 800 in the low-spin case
and �̃ � 700 in the high-spin case are within the 90% credible
intervals which are consistent with the 680.79, 622.06, and
461.03 of the 1.4M� NS binary for the IOPB-I, FSUGarnet,
and G3 parameter sets, respectively (see Table IV). We also find
a reasonably good agreement in the �̃ value equal to 582.26 for
1.35M� in the G3 EoS, which is obtained using a Markov chain
Monte Carlo simulation of a BNS with �̃ ≈ 600 at a signal-to-
noise ratio of 30 in a single aLIGO detector [112,113]. Finally,
we close this section with the discussion on chirp mass Mc

and chirp radius Rc of the BNS system, which are defined as

Mc = (m1m2)3/5(m1 + m2)−1/5, (51)

Rc = 2Mc �̃1/5. (52)

The precise mass measurements of the NSs were reported
in Refs. [107,108]. However, until now no observation has
been confirmed regarding the radius of the most massive
NS. Recently, aLIGO and VIRGO measured a chirp mass of
1.188+0.004

−0.002M� with very good precision. With the help of this,
we can easily calculate the chirp radius Rc of the BNS system
and we find that the chirp radius is in the range 7.867 � Rc �
10.350 km for equal and unequal-mass BNS systems as shown
in Table IV.

V. SUMMARY AND CONCLUSIONS

We have built a new relativistic effective interaction for
finite nuclei, infinite nuclear matter, and neutron stars. The
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optimization was done using experimental data for eight
spherical nuclei such as binding energy and charge radius.
The prediction of observables such as binding energies and
radii with the new IOPB-I set for finite nuclei is quite good.
The Z = 120 isotopic chain shows that the magicity appears at
neutron numbers N = 172, 184, and 198. Furthermore, we find
that the IOPB-I set yields slightly larger values for the neutron-
skin thickness. This is due to the small strength of the ω-ρ
cross-coupling. For infinite nuclear matter at subsaturation and
suprasaturation densities, the results of our calculations agree
well with the known experimental data. The nuclear matter
properties obtained by this new parameter set are nuclear
incompressibility K = 222.65 MeV, symmetry energy coeffi-
cient J = 33.30 MeV, symmetry energy slope L = 63.6 MeV,
and the asymmetry term of nuclear incompressibility, Kτ =
389.46 MeV, at saturation density ρ0 = 0.149 fm−3. In general,
all these values are consistent with current empirical data.

The IOPB-I model satisfies the density dependence of the
symmetry energy which is obtained from the different sets
of experimental data. It also yields the NS maximum mass to
be 2.15M�, which is consistent with the current GW170817
observational constraint [109]. The radius of the canonical
neutron star is 13.24 km, compatible with the theoretical results
in Ref. [110]. Similarly, the predicted values of dimensionless
tidal deformabilities are in accordance with the GW170817
observational probability contour [27].
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