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Because all neutron stars share a common equation of state, tidal deformability constraints from the
compact binary coalescence GW170817 have implications for the properties of neutron stars in other
systems. Using equation-of-state insensitive relations between macroscopic observables like moment of
inertia (I), tidal deformability (Λ) and stellar compactness, we derive constraints on these properties as a
function of neutron star mass based on the LIGO-Virgo Collaboration’s canonical deformability
measurement, Λ1.4 ¼ 190þ390

−120 . Specific estimates of Λ, I, dimensionless spin χ, and stellar radius R
for a few systems targeted by radio or x-ray studies are extracted from the general constraints. We also infer
the canonical neutron star radius as R1.4 ¼ 10.9þ1.9

−1.5 km at 90% confidence. We further demonstrate how a
gravitational-wave measurement of Λ1.4 can be combined with independent measurements of neutron star
radii to tighten constraints on the tidal deformability as a proxy for the equation of state. We find that
GW170817 and existing observations of six thermonuclear bursters in low-mass x-ray binaries jointly
imply Λ1.4 ¼ 196þ92

−63 at the 90% confidence level.
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I. INTRODUCTION

The macroscopic properties of neutron stars, like masses,
radii, and tidal deformabilities, are highly sensitive to the
nuclear microphysics of the stellar interior. Nonetheless,
relations between pairs of these observables are often
remarkably insensitive to internal structure: while a neutron
star’s properties depend individually on the extreme-matter
equation of state, certain combinations of them effectively do
not. Several nearly equation-of-state independent relations
among neutron star observables have been studied under the
designation of approximate universal relations (see Ref. [1]
for a review). These include I-Love-Q relations between the
moment of inertia I, the tidal deformability (or Love number)
Λ and the rotational quadrupole moment Q [2,3], effective
no-hair relations among the lowest few multipole moments
[4–6], and binary Love relations linking the tidal deform-
abilities Λ1;2 of the members of a binary system [7,8].
Neutron star universality has been proposed as a tool for
constraining observationally inaccessible properties [1],
enhancing gravitational-wave parameter estimation [8,9],
reducing uncertainty in electromagnetic radius measure-
ments [10,11], and testing general relativity (see Ref. [12]
for a review), among other applications.
The equation-of-state insensitivity of the relations con-

necting a single neutron star’s various properties is thought

to arise from an emergent symmetry in strongly gravitating
stars [13]. This kind of universality can be used to translate a
measurement of, e.g., a neutron star’s tidal deformability
into a determination of the same star’s moment of inertia
with percent-level error [2]. In conjunction with the
assumption that all neutron stars share a common equation
of state—a consequence of fundamental nuclear many-body
physics—one canmoreover establish approximate universal
relations between the properties of different neutron stars,
like the binary Love relations. The relations need not be
restricted to members of a binary system; measurements of
one neutron star have implications for the properties of all
other cold, β-equilibrated neutron stars in the Universe.
Indeed, identical universal relations with comparably

small dispersion hold whether the neutron stars are com-
posed of hadronic, quark [2] or two-phase hybrid hadron-
quark [14,15] matter. We caution, however, that neutron star
universality is violated by nonbarotropic equations of state,
such as those describing young, hot neutron stars [16,17],
and by the presence of strong stellar magnetic fields, like
those associated with magnetars [18]; inferences derived
from universal relations are therefore valid for weakly
magnetized isolated neutron stars long after formation
and binary neutron stars long before merger. Furthermore,
universality appears to be broken by certain nonstandard
equations of state with strong phase transitions [19–22].
Disagreement between universal-relation-based predictions
and direct measurements of astrophysical neutron stars
could thus be a signature of such equations of state.
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The universal I-Love relation and a specially adapted
binary Love relation were combined by Ref. [23] to infer
the moment of inertia of PSR J0737 − 3039A, the primary
component of the double pulsar, with ≈30% accuracy
based on tidal deformability constraints from GW170817
[24,25]. We extend this technique to make general infer-
ences about the properties of neutron stars, placing bounds
on tidal deformability, moment of inertia and radius R as a
function of stellar mass M via universal binary Love,
I-Love and I-compactness relations.1 We take the constraint
Λ1.4 ¼ 190þ390

−120 (median and symmetric 90% credible inter-
val) on the canonical deformability of a 1.4 M⊙ neutron star
established by Ref. [25] as our primary observational input.
Their study assumed a common equation of state [9]
and reprised the initial GW170817 parameter estimation
of Ref. [24], which found Λ1.4 ≤ 800 at 90% confidence,
assuming small neutron star spins, by performing aBayesian
analysis of the gravitational-wave strain data recorded by
AdvancedLIGO [27] andVirgo [28]. The original parameter
estimation results were also combined with priors on the
equation of state from parametric piecewise-polytrope [29]
and perturbative QCD [30] models to obtain the constraints
Λ1.4 ∈ ½120; 1504� (allowing for first-order phase transi-
tions) and Λ1.4 > 375 (95% confidence, assuming purely
hadronic composition), respectively. Similarly, Ref. [31]
used updated parameter estimation results from Ref. [32]
with a broad nonparametric equation of state prior to find
Λ1.4 ¼ 160þ448

−113 (maximum a posteriori and highest-pos-
terior-density 90% credible interval).2 We present general
tidal deformability, moment of inertia, and radius bounds
associated with these constraints for comparison with those
derived from Ref. [25].
References [32,33] also measured neutron star tidal

deformability with GW170817, but they reported the chirp
deformability Λ̃ rather than the canonical deformability
Λ1.4. The former is a mass-weighted average of the tidal
deformabilities of the neutron stars involved in the coa-
lescence and is therefore specific to the event GW170817;
the latter is a generic constraint on the equation of state that
is more easily incorporated in our universal relations.
Likewise, multimessenger parameter estimation studies
of GW170817 and its electromagnetic counterpart, com-
bining gravitational-wave and kilonova observations,
yielded intriguing constraints on Λ̃ [34–36], in addition
to other macroscopic observables [37]. The conclusions of
Refs. [32,33] are similar to those of Ref. [25], favoring a
relatively soft equation of state, while the multimessenger
analyses indicate a preference for a somewhat larger tidal

deformability, corresponding to a slightly stiffer equation of
state consistent with the findings of Ref. [29].
Besides gravitational-wave measurement of the tidal

deformability, masses and radii have been measured for
a variety of pulsars and binary neutron stars via radio and
x-ray astronomy. However, only a handful of simultaneous
mass and radius measurements exist [38]. Even the most
precise of these, obtained by fitting spectra for accretion-
powered thermonuclear bursts on the surface of neutron
stars in low-mass x-ray binaries, may be affected by
substantial systematic errors [39]. Nonetheless, we extract
radius estimates for six bursters studied by Ref. [40] from
our general constraints and find that they are consistent
with the corresponding electromagnetic measurements. In
the cases we consider, the universal-relation-based con-
straints on R turn out to be more precise than the direct
radius measurements themselves, after accounting for the
uncertainty in the burster masses.
Additionally, we estimate moments of inertia for a few

short-period double neutron stars whose relativistic peri-
astron advance may be measurable with next-generation
radio observatories, like the Square Kilometre Array [41].
Future direct measurements of I can be compared to these
gravitational-wave predictions to test the universality of the
equation of state [23]. We perform a similar moment-of-
inertia calculation for millisecond pulsars of known mass.
Using their measured angular frequencies Ω, we compute
their dimensionless spins χ ≔ cIΩ=GM2 to beOð0.1Þ. For
the fastest spinning pulsars in double neutron star systems,
we find instead χ ∼ 0.01, in keeping with conventional
expectations [42,43].
In anticipation of more accurate neutron star radius

measurements from the NICER observatory [44], we
demonstrate how the binary Love, I-Love, and I-
compactness relations can be combined into an effective
RðM;Λ1.4Þ relation that is insensitive to the equation of
state. This derived relation can be employed to place
multimessenger constraints on tidal deformability using
gravitational waves from binary neutron star mergers in
conjunction with radius measurements from x-ray binaries.
Taking simultaneous mass and radius measurements for
the six thermonuclear bursters as our input, we tighten the
GW170817-derived bounds on canonical deformability to
Λ1.4 ¼ 196þ92

−63 , assuming all the observations are equally
reliable. The constraint’s improved precision, relative to
previous results, reinforces existing observational support
for a particularly soft equation of state. Obtaining this type
of multimessenger constraint from universal relations is
simpler than performing a joint Bayesian analysis and does
not require modeling the equation of state3.

1A different universal relation has been used elsewhere in
conjunction with GW170817 to constrain the maximum mass of
nonrotating neutron stars [26].

2In the remainder of the paper, quoted error bars refer to
symmetric 90% credible intervals about the median unless
otherwise specified.

3A Bayesian analysis of this kind—but focused on the stellar
radius, rather than the tidal deformability—is presented in
Ref. [45], which appeared shortly after completion of this paper.
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We describe our universal-relation-based inference of
neutron star properties below. The equations of state used to
compute the relations are presented in Sec. II, with the
piecewise-polytrope representation we adopt detailed in
Appendix B. The binary Love, I-Love, and I-compactness
fits are introduced in Secs. II A–II C. Section III explains
our inference method. The results of the inference for
general neutron star observables, as well as for specific
systems, are presented in Secs. IVA and IV B, respectively.
Multimessenger constraints on neutron star tidal deform-
ability are calculated in Sec. V and further validated in
Appendix A. Lastly, we discuss our findings in Sec. VI.

II. UNIVERSAL RELATIONS

To infer the tidal deformabilities, moments of inertia, and
radii of astrophysical neutron stars from gravitational-wave
observations, we require universal relations linking each of
these properties to the canonical deformability deduced
through Bayesian parameter estimation [24,25]. The
desired I-Love, binary Love, and I-compactness relations
have been computed elsewhere, but for consistency in
modeling the error in the fits we recompute the latter two
here with the fiducial set of equations of state used in
Ref. [23]. We also specialize the binary Love relation of
Refs. [7,8] to our purposes. We therefore briefly recapitu-
late our choice of equations of state and our calculation of
sequences of neutron star observables before presenting the
specific fits employed for the universal relations.
Reference [23] computed the I-Love relation and a binary

Love relation between Λ1.4 and PSR J0737 − 3039A’s tidal
deformability using a collection of 53 unified equations of
state from relativistic mean-field (RMF) theory and Skyrme-
Hartree-Fock (SHF) theory. The equations of state, plotted in
Fig. 1, are consistent with studies of the bulk properties of
finite nuclei and infinite nuclear matter near nuclear satu-
ration density, as well as with the observational lower bound
on the neutron star maximum mass [46], which we con-
servatively take as 1.93 M⊙. The set includes RMF models
with hyperonic npeμY matter, in addition to hadronic RMF
and SHF npeμ-matter models, and spans a wide range in
stiffness and phenomenological behavior. Although none of
these equations of state include quark matter, as per the
Introduction, we expect the universal relations for purely
hadronic stars to hold to the same level of accuracy for
quark stars and two-phase hadron-quark hybrids. A complete
listing of the equations of state is given in Sec. 2 of Ref. [23],
and we adopt the same set for our calculations here.
The neutron star observables are determined by integrat-

ing the equations of stellar structure for a choice of equation
of state and central density. Specifically, the Tolman-
Oppenheimer-Volkoff equations [47,48] fix the stellar mass
and radius, Hartle’s slow-rotation equation [49] sets the
moment of inertia, and the field equation for the quad-
rupolar tidal perturbation governs the tidal deformability
[50]. A stable sequence of neutron stars is obtained from

successive choices of central density such that the resulting
masses span from 1 to 1.93 M⊙. (For consistency, we
truncate every sequence at 1.93 M⊙, even if the equation
of state can support a more massive star.) For the purpose of
these integrations, we adopt a piecewise-polytrope repre-
sentation of the equation of state [51]. This phenomeno-
logical parametrization is commonly used in astrophysics
and gravitational-wave astronomy because it accurately
reproduces with four parameters the neutron star properties
onewould calculate from a tabulated version of the equation
of state. We determine the accuracy of the piecewise-
polytrope fits to the RMF and SHF equations of state in
Appendix B and list the best-fit parameter values in Table V.

A. Binary Love relation

We calculate a binary Love relation between the tidal
deformability of a 1.4 M⊙ star and that of a star of massM
by performing a three-dimensional fit to ðM;Λ1.4;ΛÞ data
for a stable sequence of neutron stars with each of the 53
equations of state described above. Expanding in canonical
deformability and stellar mass, we posit a functional form

log10 Λ ¼
X4
m¼0

X1
n¼0

amnMmðlog10 Λ1.4Þn ð1Þ

for the relation and perform a least-squares fit for amn.
The resulting coefficients are listed in Table I. Projections
of the fit surface into the M-Λ plane are superimposed on
the underlying neutron star data in Fig. 2, which also shows
the fit residuals
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FIG. 1. Pressure p as function of rest-mass energy density ρ for
the RMF and SHF equations of state. The equations of state are
colored by type and composition, with a few labeled explicitly
for reference. The dividing densities of the three-segment
piecewise-polytrope representation we adopt for calculations
with the equations of state (see Appendix B) are indicated with
vertical lines, and the piecewise-polytrope parameters are shown
schematically.
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ΔΛ ¼ jΛ − Λfitj
Λfit

: ð2Þ

The residuals are calculated in the full three-dimensional
space, but are projected into theM-Λ plane in the plot. The
maximum residuals as a function of mass can be approxi-
mated by

ΔΛðMÞ ¼ b0 þ b1M þ b2M2; ð3Þ

with the coefficients bn given in Table I; for simplicity, we
suppress the Λ1.4 dependence of the residuals in our
representation of the dispersion. The function ΔΛðMÞ is
used to model the errors in the fit (1). Specifically, denoting
the best-fit tidal deformability relation from Eq. (1) as Λfit,
we take ΔΛΛfit to be half the width of the symmetric, two-
sided 90% credible interval of a Gaussian distribution

PðΛjM;Λ1.4Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2πσΛ
2

p exp

�
−
ðΛ − ΛfitÞ2

2σΛ
2

�
ð4Þ

centered on Λfit that characterizes the uncertainty in
the relation due to its approximately universal nature.
Here, σΛðMÞ ¼ ΔΛðMÞΛfit=1.645 is the standard deviation
derived from the fractional errors ΔΛðMÞ. The fractional
errors are Oð1%Þ near 1.4 M⊙ and rise to ≈50% at the
high-mass edge of the relation.
The binary Love relation (1) is similar to the one

introduced by Refs. [7,8], but is specially adapted to our
purpose. While the original binary Love relation effectively
links Λ1ðM1Þ and Λ2ðM2Þ via the mass ratio M2=M1,
assuming a common equation of state, ours essentially sets
Λ1 ¼ Λ1.4 by fixingM1 ¼ 1.4 M⊙, and accordingly we use
M2 itself in place of the mass ratio M2=ð1.4 M⊙Þ.
Moreover, Refs. [7,8] use the combinations Λs ¼
ðΛ1 þ Λ2Þ=2 and Λa ¼ ðΛ1 − Λ2Þ=2 in place of the indi-
vidual tidal deformabilities to improve the universality of
the fit. Doing the same would unnecessarily complicate our
inference, as a closed-form expression for Λ2 cannot be
obtained from a log-log polynomial fit for ðΛs;ΛaÞ. In any
case, the dispersion in our modified binary Love relation is
nearly as small as in the original formulation.

B. I-Love relation

We adopt the I-Love relation from Eq. (7) of Ref. [23]
directly, as it was computed with the same set of equations
of state considered here. The coefficients of the log-log
polynomial fit

log10 Ī ¼
X4
n¼0

cnðlog10 ΛÞn ð5Þ

for the dimensionless moment of inertia Ī ≔ c4I=G2M3 as
a function of tidal deformability are given in Table I. The
fit, the (Λ; Ī) data, and the residuals

ΔĪ ¼ jĪ − Īfitj
Īfit

ð6Þ

can be seen in Fig. 4 of Ref. [23]. The maximum residuals
are approximately constant over the relevant range of Λ,
amounting to no more than 0.6% error. We therefore take
this value to define the half-width of the 90% credible
interval of the Gaussian uncertainty in the fit, modeled in
the same manner as above, such that
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FIG. 2. Binary Love relation calculated with our set of 53
equations of state. The black dashed lines in the upper panel are
selected Λ1.4 ¼ constant slices of the three-dimensional fit (1) to
the sequences of ðM;Λ1.4;ΛÞ data. The fit and data are projected
into theM-Λ plane for display purposes only. The fit residuals are
plotted in the lower panel, where the purple dashed curve
approximates the maximum residuals in accordance with Eq. (2).

TABLE I. Coefficients of the fits (1), (3), (5), and (8) for the binary Love, I-Love, and I-compactness relations.

ΛðM;Λ1.4Þ ΔΛðMÞ ĪðΛÞ CðĪÞ
a00 ¼ −9.4469 a01 ¼ 4.6152 b0 ¼ 3.7152 c0 ¼ 6.5022 × 10−1 d0 ¼ 4.8780 × 10−2

a10 ¼ 3.9702 × 101 a11 ¼ −1.2226 × 101 b1 ¼ −5.2874 c1 ¼ 5.8594 × 10−2 d1 ¼ −4.2829 × 10−1

a20 ¼ −4.9173 × 101 a21 ¼ 1.4214 × 101 b2 ¼ 1.8876 c2 ¼ 5.1749 × 10−2 d2 ¼ 1.2468
a30 ¼ 2.4937 × 101 a31 ¼ −7.1134 � � � c3 ¼ −3.6321 × 10−3 d3 ¼ −9.0716 × 10−1

a40 ¼ −4.7288 a41 ¼ 1.3416 � � � c4 ¼ 8.5909 × 10−5 d4 ¼ 2.3302 × 10−1

BHARAT KUMAR and PHILIPPE LANDRY PHYS. REV. D 99, 123026 (2019)

123026-4



PðĪjΛÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2πσ Ī

2
p exp

�
−
ðĪ − ĪfitÞ2
2σ Ī

2

�
; ð7Þ

with σ Ī ¼ ΔĪĪfit=1.645.

C. I-compactness relation

Our universal relation between the dimensionless
moment of inertia and the stellar compactness C ≔
GM=c2R is based on a similar one from Ref. [52].
Quasiuniversal I-compactness relations predate the I-
Love-Q relations in the literature [11,53–55], but generally
exhibit a lesser degree of equation-of-state independence
[1,56]. Reference [52] discovered that the relation’s uni-
versality could be enhanced by using the normalization
Ī ¼ c4I=G2M3 for the dimensionless moment of inertia, as
in Refs. [2,3], rather than the conventional definition
I=MR2. Hence, theirs is the version of the I-compactness
relation we calculate here; however, we fit for the inverse
relation, namely, CðĪÞ.
Taking (Ī, C) data for our stable sequences of neutron

stars, we perform a least-squares fit to the model

C ¼
X4
n¼0

dnðlog10 ĪÞ−n; ð8Þ

displaying the resulting coefficients in Table I. The fit and
the residuals

ΔC ¼ jC − Cfitj
Cfit

ð9Þ

are shown alongside the underlying neutron star data in
Fig. 3. The maximum residuals are roughly constant as a
function of Ī, so we take the maximum value of 3% to
define the half-width of the 90% credible interval about the
mean of the Gaussian distribution describing the error in
the relation

PðCjĪÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2πσC

2
p exp

�
−
ðC − CfitÞ2

2σC
2

�
ð10Þ

with σC ¼ ΔCC=1.645.

III. INFERENCE SCHEME

Equipped with the distributions (4), (7), and (10)
describing the probabilistic mappings defined by the
universal relations, we can translate a gravitational-wave
measurement of Λ1.4 into constraints on neutron stars’ tidal
deformabilities, moments of inertia, spins, and radii.
Our inference of these observables is described in general
terms here; we apply it to the observational input from
GW170817 in the following section.

We suppose that PðΛ1.4jGWÞ, the posterior probability
distribution for the canonical deformability given a gravi-
tational wave observation (GW), is known. The target of
our inference is taken to be a neutron star for which a mass
posterior PðMjEMÞ is available from electromagnetic
observations (EM). (The case of general constraints on
neutron star properties, absent a specific target system, is
treated separately below.) The posterior distributions from
the independent gravitational-wave and electromagnetic
measurements serve as priors for our inference of the
target’s properties.
First, the posterior distribution PΛðΛjEM;GWÞ for

the target’s tidal deformability, conditioned on the
gravitational-wave and electromagnetic observations, is
computed by marginalizing the binary Love relation over
the two priors:

PΛðΛjEM;GWÞ

¼
Z

PðΛjM;Λ1.4ÞPðMjEMÞPðΛ1.4jGWÞdMdΛ1.4: ð11Þ

The posterior distribution for the target’s dimensionless
moment of inertia can then be calculated via the I-Love
relation as

PĪðĪjEM;GWÞ ¼
Z

PðĪjΛÞPΛðΛjEM;GWÞdΛ ð12Þ

by marginalizing over the tidal deformability. The poste-
riors for the moment of inertia I ¼ G2ĪM3=c4 and the
dimensionless spin χ ¼ GĪMΩ=c3 follow by a change of
variables and a marginalization over mass:

PIðIjEM;GWÞ

¼ c4

G2

Z
PĪðc4I=G2M3jEM;GWÞPðMjEMÞ

M3
dM; ð13Þ

0.12

0.16

0.2

0.24

0.28
RMF(npeμ)
RMF(npeμY)
SHF(npeμ)
fit

8 12 16 20 24 28

0.01

0.02

0.03

I

C

_

NL3

BCPM

SLY4

DDME2

MPA1

IOPB-I

ΔC
 

FIG. 3. I-compactness relation calculated with our set of 53
equations of state. The fit (8) is shown as a black dashed line, and
the fit residuals are displayed in the lower panel.
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P χð χjEM;GWÞ

¼ c3

G

Z
PĪðc3 χ=GMΩjEM;GWÞPðMjEMÞ

MΩ
dM: ð14Þ

When inferring χ, we assume that the neutron star’s
rotational frequency Ω is known exactly. However, uncer-
tainty in Ω can easily be accommodated by integrating
Eq. (14) against PðΩjEMÞdΩ.
From Eq. (12), we can also infer the posterior distribu-

tion for the target’s compactness C ¼ GM=c2R through

PCðCjEM;GWÞ ¼
Z

PðCjĪÞPĪðĪjEM;GWÞdĪ; ð15Þ

which makes use of the I-compactness relation and leads
immediately to an inference of the target’s radius via

PRðRjEM;GWÞ

¼ G
c2

Z
PCðGM=c2RjEM;GWÞPðMjEMÞ

R2
MdM: ð16Þ

In the event that the target’s mass is known exactly,
PðMjEMÞ reduces to a Dirac delta function in M and
the mass marginalizations are trivial.
Given the posterior distributions (11), (13), (14), and

(16), we can compute the median value ofΛ, I, χ, and R for
the target star and extract symmetric credible intervals for
each observable. General constraints on neutron star
properties, rather than inferences for a specific target
system, can also be calculated by dispensing with the
mass marginalizations altogether and computing the pos-
terior distributions as a function of mass based on the
gravitational-wave observation alone, i.e.,

PΛM
ðΛjM;GWÞ ¼

Z
PðΛjM;Λ1.4ÞPðΛ1.4jGWÞdΛ1.4;

ð17Þ

PĪMðĪjM;GWÞ ¼
Z

PðĪjΛÞPΛM
ðΛjM;GWÞdΛ; ð18Þ

PRM
ðRjM;GWÞ¼PCM

ðGM=c2RjM;GWÞGM=c2R2:

ð19Þ

Here, we have defined PCM
ðCjM;GWÞ ≔ R

PðCjĪÞ×
PĪMðĪjM;GWÞdĪ. By calculating credible intervals about
the median a posteriori for each value of mass in the
domain, we can place constraints on the M-Λ, M − Ī, and
M − R relations that govern all old, cold neutron stars in the
Universe.

IV. IMPLICATIONS OF GW170817
FOR NEUTRON STAR PROPERTIES

We apply the inference described above to astrophysical
neutron stars, using GW170817—and, specifically, the
measurement Λ1.4 ¼ 190þ390

−120 from Ref. [25]—as our obser-
vational gravitational-wave input. However, since only the
median and symmetric 90% credible interval for Λ1.4 were
reported in Ref. [25], we must model the full posterior
distributionPðΛ1.4jGWÞ. In order to preserve the asymmetry
evident in the credible interval, we choose to represent it as a
generalized beta prime distribution

PðΛ1.4jGWÞ¼ pΓðαþβÞ
qΓðαÞΓðβÞ

�
Λ1.4

q

�
αp−1

�
1−

�
Λ1.4

q

�
p
�
−α−β

ð20Þ

with parameters p ¼ 1, q ¼ 0.934, α ¼ 2.856, and
β ¼ 191.509, where ΓðzÞ is the gamma function. With
these parameter selections, the distribution has the same
symmetric 90% credible interval as implied by the
gravitational-wave measurement, and its median of 198
is only shifted mildly relative to the actual value. Thus, our
model for PðΛ1.4jGWÞ closely reproduces the features of
the measurement reported in Ref. [25].
Using this posterior probability distribution, we first

infer general constraints on the M-Λ, M − Ī, and M − R
relations, and then extract specific bounds for individual
neutron stars of interest. Because our universal relations’
fits and errors are based on data for M ∈ ½1; 1.93�M⊙, we
focus on neutron stars with (median) M ≤ 1.93 M⊙ in this
paper to avoid extrapolation insofar as possible.

A. General constraints

Following Eqs. (17)–(19), we calculate, as a function of
mass, symmetric 90% credible intervals about the median
for each of the neutron star properties attainable from the
GW170817 Λ1.4 measurement by way of the universal
relations. The resulting constraints on ΛðMÞ, ĪðMÞ, and
RðMÞ are plotted in Figs. 4–6. The canonical deformability
measurement maps to the colored band with decreasing
slope in theM-Λ plane seen in Fig. 4, reflecting the fact that
Λ is a monotonically decreasing function of mass. We
observe that several of the stiffer reference equations of
state, e.g., NL3, DDME2, and IOPB-I, lie outside the
90% confidence region, in keeping with the preference
found by other studies [24,25,32,33] for a relatively soft
equation of state. Similarly, the ΛðMÞ constraint transforms
to the colored band in the M − Ī plane shown in Fig. 5. Its
decreasing slope reflects the monotonicity of ĪðMÞ for
realistic equations of state, and the same stiff models are
disfavored.
The corresponding RðMÞ constraint is depicted in Fig. 6.

The median M − R relation reveals that neutron star
universality imposes near constancy of the radius over
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the mass range of interest. The colored region of the
plot excludes radii larger than 13.0 km and less than
8.7 km at 90% confidence for stars with M ∈ ½1; 1.93�M⊙.
Evaluating the constraint at M ¼ 1.4 M⊙, GW170817
implies R1.4 ¼ 10.9þ1.9

−1.5 km for the canonical radius. This
value is compatible with upper bounds of ≈13–14 km
computed via equation-of-state modeling [29,30,57,58] or

a universal chirp-deformability–radius relation [59]. It also
overlaps with the result of Ref. [34], R1.4 ¼ 12.2þ1.0

−0.8 km,
obtained by joint gravitational-wave and electromagnetic
parameter estimation for GW170817.
To illustrate how the inferred bounds on the properties as a

function of mass depend on the choice of priors and
assumptions made in the initial parameter estimation for
Λ1.4, in Figs. 4–6 we also show the general constraints
stemming from Ref. [24] (Λ1.4 ≤ 800, without the common
equation-of-state assumption), Ref. [29] (120≤Λ1.4≤1504,
modeling the equation of state as a piecewise polytrope),
Ref. [30] (Λ1.4 > 375, modeling the equation of state
via perturbative QCD calculations), and Ref. [31]
(Λ1.4 ¼ 160þ448

−113 , modeling the equation of state with a
Gaussian process). Since these results are only shown for
comparative purposes, we do not perform the full inference
described in Sec. III. Rather, we simply map each Λ1.4
constraint through the best-fit universal relations, accounting
for uncertainty by inflating upper and lower bounds by a
factor of the fractional error in the fit. In this way, we obtain
conservative estimates of the alternative constraints’ impli-
cations for neutron star properties. As can be seen, the upper
bound of Ref. [29] is stiff enough to allow all the reference
equations of state.Meanwhile, depending on the analysis, the
constraint’s lower bound excludes a varying fraction of the
region compatiblewith neutron star universality.Wenote that
the maximum a posteriori from Ref. [31] is omitted in the
plots, as it is similar to the median from Ref. [25].

B. Individual neutron stars

Next, we extract constraints on the properties of
specific neutron stars of interest—primarily pulsars with
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FIG. 5. Constraints on the mass–moment-of-inertia relation
ĪðMÞ from GW170817 and the universal relations. ĪðMÞ relations
for a few reference equations of state, as well as the dimensionless
moment of inertia inferred for the double pulsar by Ref. [23], are
also shown.
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FIG. 6. Constraints on the mass-radius relation RðMÞ from
GW170817 and the universal relations. RðMÞ relations for a few
reference equations of state are also shown. The posterior 90%
credible contour from the simultaneous mass and radius meas-
urement of EXO 1745-248 is overplotted in brown, demonstrat-
ing the consistency of the universal-relation-based inference with
electromagnetic observations of neutron stars.
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FIG. 4. Constraints on the mass–tidal-deformability relation
ΛðMÞ from GW170817 and the universal relations. The green
line and shaded region show the median and symmetric 90%
credible interval derived from the Λ1.4 measurement of Ref. [25].
Upper (respectively, lower) bounds stemming from alternative
constraints are indicated by solid (dashed) colored lines; the input
Λ1.4 constraints can be read off from the ΛðMÞ curves at M ¼
1.4 M⊙ (dotted vertical line). ΛðMÞ relations for a few reference
equations of state are shown in black. The tidal deformability
inferred for the 1.338 M⊙ PSR J0737 − 3039A by Ref. [23] on
the basis of the canonical deformability measurement of Ref. [25]
(Ref. [24]) is indicated with the pink error bars (orange point).
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well-measured masses from electromagnetic observations—
following Eqs. (11)–(16). In the literature, universal relations
have been proposed as a tool for improving the precision of a
measurement of neutron star radius, spin, or moment of
inertia [1,60,61]; however, until recently [23], the application
has always involved translation of one observable (e.g.,Λ) to
another (e.g., I) for the same system. Here we use
GW170817 to infer the properties of individual neutron
stars in other systems. We compute their tidal deformabil-
ities, moments of inertia, and radii using the Λ1.4 constraint
from Ref. [25].

1. Double neutron stars

We begin by inferring the tidal deformability, moment of
inertia, and radius for the pulsar component of several
short-period double neutron star systems. Double neutrons
stars in tight binaries are good candidates for an electro-
magnetic measurement of the stellar moment of inertia if
radio pulses from one member of the system are detectable,
as they can be used to determine the post-Keplerian
parameters of the orbit with great precision [62]. In
particular, a sufficiently precise measurement of the sys-
tem’s relativistic periastron advance can distinguish the part
due to spin-orbit coupling, which is proportional to the spin
of the pulsar; knowledge of its angular frequency can then
be used to extract the moment of inertia, which depends
sensitively on the equation of state. No electromagnetic
neutron star I measurements exist at present, but they may
be feasible with the Square Kilometre Array and other next-
generation radio observatories [63].
The best-studied candidate for a future moment-of-

inertia measurement is the double pulsar, PSR J0737 −
3039 [64,65]. Its 1.338 M⊙ primary component’s moment
of inertia was estimated by Ref. [23] as 1.15þ0.38

−0.24×
1045 gcm2 based on GW170817 and universal relations.
We revisit the calculation here, ignoring the uncertainty of
less than one part in 10−3 in the pulsar’s mass—i.e., taking
PðMjEMÞ ¼ δðM − 1.338 M⊙Þ—when using Eq. (13).

Despite using a slightly different binary Love relation than
Ref. [23], we find a nearly identical moment-of-inertia
constraint, I ¼ 1.16þ0.33

−0.25 × 1045 g cm2. Furthermore, we
infer the pulsar’s tidal deformability to be 269þ439

−170 and
its radius as 11.0þ1.9

−1.5 km. This radius value is no different,
within uncertainty, than that of a canonical 1.4 M⊙ star.
PSR J1946þ2052 is another especially promising can-

didate for a moment-of-inertia measurement, since it
resides in the tightest double neutron star system discov-
ered to date [66]; it is also the fastest-spinning pulsar with a
neutron star companion that will merge within a Hubble
time. However, given its relatively recent discovery, the
pulsar’s mass has not yet been determined with precision—
only an upper bound of 1.31 M⊙ exists. Nonetheless, if we
model PðMjEMÞ as flat for M ∈ ½1.0; 1.3�M⊙, we are able
to estimate its moment of inertia as 0.96þ0.37

−0.26 × 1045 g cm2

by marginalizing over the mass uncertainty.
In Table II, we report the inferred properties of these and

several other pulsars in double neutron star systems, such as
PSR B1913þ16, the Hulse-Taylor pulsar [67]. As with
PSR J0737 − 3039A, we take their masses to be known
exactly for the purpose of the calculation, except for the
aforementioned case of PSR J1946þ2052. The errors
reported in the table therefore account for the approximate
nature of the universal relations and the uncertainty in the
Λ1.4 measurement from GW170817. Although the pulsar
masses are clustered in the small range of ≈1.3–1.6 M⊙,
the inferred 90% credible intervals for the tidal deform-
abilities are distributed over an order of magnitude. The Λ
uncertainties are typically lopsided, with larger error bars
on the upper side, because the monotonically decreasing
function ΛðMÞ behaves roughly like 1=M, tending to a
constant value at large M. For the moments of inertia, we
find that they are typically constrained by GW170817 to
≈30% accuracy, with median values of ∼1 × 1045 g cm2.
Given the weak mass dependence of the radius for
M ∈ ½1; 1.93�M⊙, the median radius for nearly all the
pulsars in Table II is 11.0 km.

TABLE II. Inferred properties of pulsars in double neutron star systems. The tidal deformability, moment of inertia, radius, and
dimensionless spin are calculated via universal relations from the Λ1.4 constraint of Ref. [25]. Orbital periods, masses, and rotational
frequencies are drawn from the listed references. The measurement uncertainty of no more than�1 in the last digit ofM is ignored for the
purpose of the inference, with the exception of PSR J1946þ2052, for which we assume a flat probability distribution forM ∈ ½1; 1.3�M⊙.

Pulsar Porb (d) M ðM⊙Þ Ω (rad s−1) Reference Λ I ð1045 g cm2Þ R (km) χ

B1534þ12 0.421 1.333 165.76 [68] 276þ449
−174 1.15þ0.33

−0.24 11.0þ1.9
−1.5 0.012þ0.004

−0.003
B1913þ16 0.323 1.438 106.44 [69] 163þ286

−106 1.27þ0.37
−0.27 10.9þ1.9

−1.5 0.007þ0.002
−0.002

B2127þ11C 0.335 1.36 205.81 [70] 241þ399
−153 1.19þ0.34

−0.25 11.0þ1.9
−1.5 0.015þ0.004

−0.003
J0453þ1559 4.072 1.56 137.24 [71] 89þ172

−60 1.41þ0.41
−0.29 10.9þ1.9

−1.5 0.009þ0.003
−0.002

J0737−3039A 0.102 1.338 276.80 [72] 269þ439
−170 1.16þ0.33

−0.25 11.0þ1.9
−1.5 0.020þ0.006

−0.004
J1756−2251 0.320 1.34 220.76 [73] 267þ435

−168 1.16þ0.34
−0.25 11.0þ1.9

−1.5 0.016þ0.005
−0.003

J1906þ0746 0.166 1.29 43.61 [74] 344þ542
−215 1.11þ0.32

−0.24 11.0þ1.9
−1.5 0.003þ0.001

−0.001
J1946þ2052 0.078 <1.31 370.47 [66] 710þ1516

−490 0.96þ0.37
−0.26 11.0þ1.9

−1.6 0.031þ0.009
−0.007
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2. Millisecond pulsars

Precise mass and angular frequency measurements exist
for a number of millisecond pulsars thanks to detailed
studies of their regular radio pulses. Here we calculate their
moments of inertia as a way to infer their dimensionless
spins. We focus on a subset of the millisecond pulsars
considered in Ref. [38] and list their masses, angular
frequencies, and inferred properties in Table III. The subset
includes PSR J0437−4715, the closest and brightest pulsar
detected to date [75], and PSR J1713þ0747, one of the
most precisely timed pulsars [76].
We model the uncertainty in the pulsars’ masses as

Gaussian, converting the standard deviations reported in the
original references listed in the table to 90% credible
intervals. With this model for PðMjEMÞ, we follow the
prescription of Sec. III for computing credible intervals
about the median moment of inertia. Overall, we find that
the errors bars on I are slightly larger than for the double
neutron stars in Table II on account of the broader mass
uncertainties for the millisecond pulsars.
Incorporating the pulsars’ known angular frequencies,

we then infer the stars’ dimensionless spins. We find that
the universal relations permit χ to be inferred from
GW170817 with ≈30% accuracy in an approximately
equation-of-state independent way. The fastest-spinning
pulsar we consider, PSR J1909−3744, is found to
have χ ¼ 0.147þ0.043

−0.031 .
The astrophysical spin distribution for millisecond pul-

sars is known to extend up to at least χ ∼ 0.4 [81], while
binary neutron stars that merge within a Hubble time are
expected to have much smaller spins χ ≲ 0.05 [23,42,43].
Hence, for comparison, we also infer the dimensionless
spin for the pulsar components of the double neutron star
systems listed in Table II. We find that the pulsars of this
kind have dimensionless spin χ ≲ 0.04 at 90% confidence,
while the millisecond pulsars in Table III have dimension-
less spins below χ ≈ 0.20. One could systematize this
dimensionless spin inference for all known pulsars to
establish a virtually equation-of-state independent upper
bound on the spin distribution, whose precision would
improve as more gravitational-wave events are detected.

Because the universal relations used here were developed
in the context of slowly rotating stellar models, one might
suppose that they do not apply to rapidly rotating milli-
second pulsars. However, Refs. [4,82] showed that they
also hold for stars in rapid uniform rotation,4 despite earlier
claims to the contrary [84]. In any case, for stars with
moderate rotation ( χ ∼ 0.1), spin corrections to the moment
of inertia are negligible, as they enter at Oð χ2Þ ∼ 10−2.
In addition, we note that our spin analysis depends

implicitly on the assumption that the progenitors of
GW170817 rotated slowly, with χ ≤ 0.05, through the
priors adopted in the parameter estimation of Ref. [25]. The
low-spin assumption is consistent with dimensionless spin
estimates for the fastest-spinning pulsars in double neutron
star systems [23,42,43]. However, for a spin inference that
is independent of this assumption, one could repeat the
calculation with the upper bound Λ ≤ 1400 from Ref. [24],
which instead requires only χ ≤ 0.89 a priori. Indeed, this
was done for the double pulsar in Sec. 5 of Ref. [23].

3. Low-mass x-ray binaries

Neutron stars in x-ray binaries are the best candidates
for electromagnetic radius measurements. Radius estimates
for a few systems already exist, although their accuracy
is a matter of some debate [39]. The most precise
measurements involve thermonuclear bursters in low-mass
x-ray binaries; by fitting for the spectrum of the thermal
emission, which is related to the burst luminosity by a
factor of the surface area, one can determine the radius from
the observed flux [38]. Observations from the NICER
mission are expected to place even tighter and more
accurate constraints on neutron star radii via pulse profile
modeling [85].
For the time being, we focus on six bursters in low-mass

x-ray binaries for which simultaneous mass and radius
measurements exist [40]. In Table IV, we list the median

TABLE III. Inferred properties of millisecond pulsars. The tidal deformability, moment of inertia, radius, and dimensionless spin are
calculated via universal relations from the Λ1.4 constraint of Ref. [25]. Masses and rotational frequencies are drawn from the listed
references. The Gaussian errors in M have been converted to the 90% confidence level.

Pulsar M ðM⊙Þ Ω (rad s−1) Reference Λ I ð1045 g cm2Þ R (km) χ

J0437−4715 1.44� 0.12 1091.31 [75] 163þ344
−116 1.28þ0.40

−0.29 10.9þ1.9
−1.5 0.076þ0.022

−0.016
J0751þ1807 1.64� 0.25 1795.20 [77] 59þ227

−51 1.50þ0.51
−0.39 10.7þ1.9

−1.6 0.114þ0.036
−0.026

J1713þ0747 1.31� 0.18 1374.84 [76] 310þ710
−232 1.13þ0.40

−0.30 11.0þ1.8
−1.5 0.103þ0.029

−0.023
J1802−2124 1.24� 0.18 496.79 [78] 439þ939

−326 1.05þ0.38
−0.28 11.0þ1.8

−1.5 0.038þ0.011
−0.009

J1807−2500B 1.3655� 0.0034 1500.93 [79] 234þ391
−149 1.19þ0.35

−0.25 11.0þ1.9
−1.5 0.109þ0.032

−0.023
J1909−3744 1.47� 0.05 2131.98 [75] 139þ261

−94 1.31þ0.38
−0.28 10.9þ1.9

−1.5 0.147þ0.043
−0.031

J2222−0137 1.20� 0.23 191.46 [80] 509þ1062
−397 1.02þ0.40

−0.29 10.9þ1.7
−1.6 0.015þ0.004

−0.003

4Because we evaluate the stability of our neutron star sequen-
ces in the absence of rotation, we are excluding supramassive
(i.e., rotation-stabilized) neutron stars, for which the universal
relations deteriorate at high compactness [83].

INFERRING NEUTRON STAR PROPERTIES FROM GW170817 … PHYS. REV. D 99, 123026 (2019)

123026-9



and symmetric 90% credible intervals for the neutron star
masses and radii extracted from the M − R posteriors
associated with the electromagnetic observations.5 (Note
that the masses and radii reported in Refs. [38,40] are given
instead as maxima a posteriori with symmetric uncertain-
ties at the 68% confidence level.) The credible intervals are
calculated from the marginal distributions PðMjEMÞ ¼R
PðM;RjEMÞdR and PðRjEMÞ ¼ R

PðM;RjEMÞdM,
respectively, with PðM;RjEMÞ constructed from the
available posterior samples. Taking the calculated
PðMjEMÞ as our mass prior in Eq. (16), we obtain a
GW170817-based radius estimate for the neutron stars
through the universal relations. The inferred radii are
consistent with the REM values obtained from the direct
measurements via PðRjEMÞ. This can also be seen in
Fig. 6, where—as an example—we overlay the 90% con-
fidence contour of PðM;RjEMÞ for EXO 1745-248 on
our RðMÞ constraints. In Table IV, besides the inferred
radius, we also show the tidal deformability and moment
of inertia calculated for each burster. We note that, for the
thermonuclear bursters considered here, the universal
relations and GW170817 actually provide a more precise
radius determination at the 90% confidence level than the
direct observations, after marginalizing over the mass
posterior PðMjEMÞ.

V. MULTIMESSENGER CONSTRAINTS
ON TIDAL DEFORMABILITY

Typical multimessenger probes of the neutron star
equation of state involve gravitational-wave and electro-
magnetic measurements of the same system. However, the
universal relations provide a means to translate observa-
tions of low-mass x-ray binaries into quantities, like tidal
deformabilities, that are normally measured via gravita-
tional waves from binary neutron star mergers. The
independent gravitational-wave and electromagnetic mea-
surements can then be combined to tighten the constraints

on the tidal deformability as a proxy for the equation
of state.
We use the simultaneous mass and radius measure-

ments for the aforementioned bursters in conjunction
with GW170817 to improve knowledge of the canonical
deformability, starting with EXO 1745-248 as an exam-
ple. The symmetric 90% credible intervals for its mass
and radius, calculated from the M − R posterior samples
associated with the electromagnetic observations, are
given in Table IV. The uncertainty of ≈25% in its radius
at 90% confidence is characteristic of the best current
measurements; radius measurements with a better level of
precision (≈15% at 90% confidence) are expected from
pulse profile modeling with NICER [85].
To infer the canonical deformability implied by EXO

1745-248’s measured mass and radius, we link R and Λ1.4
through the universal relations by combining the proba-
bility distributions (4), (7), and (10), such that

PΛ1.4
ðΛ1.4jEMÞ

¼ G
c2

Z
PðM;RjEMÞPðGM=c2RjĪÞPðĪjΛÞPðΛjM;Λ1.4Þ

R2

×MdΛdĪdRdM: ð21Þ

This amounts to using the fits (1), (5), and (8) successively
to produce a function

RðM;Λ1.4Þ

¼ c2

GM

X4
k¼0

dk

�X4
l¼0

cl

�X4
m¼0

X1
n¼0

amnMmðlog10Λ1.4Þn
�l�−k

;

ð22Þ

while also accounting for the uncertainty in each universal
relation. Equation (21) allows us to convert the probability
distributionPðM;RjEMÞ constructed fromEXO1745-248’s
M − R posterior samples to a posterior distribution for the
canonical deformability, PΛ1.4

ðΛ1.4jEMÞ. This posterior dis-
tribution is plotted in Fig. 7. Calculating its median and

TABLE IV. Inferred properties of neutron stars in low-mass x-ray binaries for which simultaneous mass and radius measurements
exist. The tidal deformability, moment of inertia, and radius are calculated via universal relations from the Λ1.4 constraint of Ref. [25].
Masses and direct radius measurements REM are obtained from the M − R posteriors associated with [40], as described in the text.

Neutron star M ðM⊙Þ REM (km) Λ I ð1045 g cm2Þ R (km)

4U 1608−52 1.59þ0.54
−0.47 10.2þ3.7

−2.7 74þ532
−72 1.45þ0.61

−0.53 10.7þ1.9
−1.7

4U 1724−207 1.81þ0.36
−0.48 11.5þ2.5

−2.5 24þ291
−23 1.64þ0.54

−0.54 10.4þ2.0
−1.6

4U 1820−30 1.76þ0.44
−0.43 11.2þ3.2

−2.6 32þ297
−31 1.60þ0.56

−0.52 10.5þ2.0
−1.6

EXO 1745−248 1.60þ0.36
−0.42 10.3þ2.7

−2.4 72þ477
−67 1.45þ0.56

−0.50 10.7þ1.9
−1.6

KS 1731−260 1.59þ0.61
−0.62 10.4þ3.8

−3.4 67þ587
−65 1.47þ0.63

−0.57 10.6þ1.9
−1.7

SAX J1748.9−2021 1.73þ0.43
−0.56 11.3þ2.9

−2.9 37þ450
−36 1.57þ0.57

−0.59 10.5þ1.9
−1.7

5The mass-radius posteriors are available in tabulated form at
http://xtreme.as.arizona.edu/NeutronStars/.
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symmetric 90% credible interval, we findΛ1.4 ¼ 139þ284
−82 . In

other words, the constraint REM ¼ 10.7þ1.9
−1.6 stemming from

x-ray observations of EXO 1745-248 translates to these
bounds on canonical deformability, as the universal relations
map the mass-radius posterior PðM;RjEMÞ to the distribu-
tion PΛ1.4

ðΛ1.4jEMÞ shown in the figure.
We subsequently repeat the EXO 1745-248 analysis

for the other neutron stars listed in Table IV, obtaining
posterior distributions PΛ1.4

ðΛ1.4jEMiÞ for bursters
i ¼ 1;…; 6. We then combine these indirect constraints
on Λ1.4 with the direct measurement from GW170817,
Λ1.4 ¼ 190þ390

−120 , to get joint electromagnetic and gravita-
tional-wave constraints that are tighter than the individual
measurements. The combined posterior distribution is
computed as

PðΛ1.4jEM;GWÞ¼PðΛ1.4ÞPðGWjΛ1.4Þ
Y
i

PΛ1.4
ðEMijΛ1.4Þ

ð23Þ

by multiplying the likelihoods PðGWjΛ1.4Þ and
PΛ1.4

ðEMijΛ1.4Þ with a chosen prior PðΛ1.4Þ, lending equal
weight to each observation. The likelihoods are related to
the posteriors by Bayes’ theorem

PðGWjΛ1.4Þ ¼
PðΛ1.4jGWÞ
PðΛ1.4Þ

;

PΛ1.4
ðEMijΛ1.4Þ ¼

PΛ1.4
ðΛ1.4jEMiÞ

PΛ1.4
ðΛ1.4Þ

ð24Þ

up to normalizations. The common prior PΛ1.4
ðΛ1.4Þ for

the electromagnetic observations is calculated from
Eq. (21) assuming a uniform distribution in M and R,
i.e., replacing PðM;RjEMÞ with PðM;RÞ ¼ constant.
The mapping (22) is such that small values of canonical
deformability are more likely a priori, despite the
uninformative mass-radius prior. The prior PðΛ1.4Þ in
Eq. (23) is chosen to be identical to the one appearing
in Eq. (24) for the gravitational-wave observation. Then,
Eq. (23) reduces to

PðΛ1.4jEM;GWÞ¼PðΛ1.4jGWÞ
Y
i

PΛ1.4
ðΛ1.4jEMiÞ

PΛ1.4
ðΛ1.4Þ

; ð25Þ

which yields a median and symmetric 90% credible
interval of Λ1.4 ¼ 196þ92

−63 . This joint posterior is plotted
in Fig. 7. As can be seen, the collective impact of the
burster measurements is to substantially reduce the size of
the error bars on Λ1.4 relative to the gravitational-wave
observation alone; meanwhile, the median is hardly
changed. This is because most of the electromagnetic
mass-radius measurements imply a smaller canonical tidal
deformability than GW170817 a posteriori, thereby cut-
ting off the long tail of PðΛ1.4jGWÞ that extends to large
values of Λ1.4; simultaneously, the bulk of the observa-
tions provide minimal support for Λ1.4 ≲ 60. Hence, the
incorporation of electromagnetic observations of neutron
stars in low-mass x-ray binaries appears to disfavor some
of the stiffer candidate equations of state that remained
compatible with GW170817, while corroborating a
canonical deformability of ≈200.
However, we remark that the combined constraint is

only as reliable as the simultaneous mass and radius
measurements themselves—although we do point out in
Appendix A that our conclusions are robust against the
removal of any one electromagnetic observation. Figure 7
shows that the Λ1.4 posteriors for 4U 1608-52 and KS
1731-260 are outliers relative to both the GW170817
posterior and the other burster posteriors. Since Λ1.4 is a
unique property of the equation of state, which is common
to all neutron stars, the discrepancy among maxima
a posteriori for the electromagnetic measurements indi-
cates that the observations are not, in fact, equally accurate.
As we have not accounted for possible systematic errors in
the x-ray observations, it will be interesting to see whether
this inference of Λ1.4 is corroborated by future data
from NICER.

VI. DISCUSSION

In this paper, we used universal relations and con-
straints on canonical deformability from GW170817 to
bound the mass–tidal-deformability, mass–moment-of-
inertia, and mass-radius relations satisfied by all cold
neutron stars. We found that the neutron star radius is

FIG. 7. Posterior distributions for Λ1.4. Our model (20) of the
posterior for the Λ1.4 measurement (green) of Ref. [25] and the
posterior distribution inferred from electromagnetic observations
of EXO1745-258 [40] (orange) are shown. The Λ1.4 posteriors
derived from several other observations of thermonuclear bursters
are plotted in gray. The combined distribution resulting from the
set of electromagnetic observations, plus GW170817, is shown in
blue. The median and symmetric 90% credible interval of the
combined distribution are indicated with the dashed and dotted
vertical lines, respectively.
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constrained to be roughly constant for M ∈ ½1; 1.93�M⊙,
with radii larger than 13.0 km ruled out at 90% con-
fidence. The mass-radius relations that are compatible
with GW170817 are also consistent with existing simul-
taneous mass and radius measurements for six thermo-
nuclear bursters.
Moreover, we inferred tidal deformabilities, moments

of inertia, dimensionless spins, and radii for individual
neutron stars of interest. The moments of inertia of a few
double neutron stars were constrained to ≈30% accuracy
at 90% confidence by GW170817 and the universal
relations, while the canonical neutron star radius was
inferred as R1.4 ¼ 10.9þ1.9

−1.5 km. The dimensionless spins
for a set of millisecond pulsars with well-measured
masses were calculated to be ≲0.20, and those for a
set of pulsars in double neutron star systems were found
to be ≲0.04. The spin inferences presented here could be
extended to the full population of pulsars with measured
masses and rotational frequencies to obtain a spin
distribution that is less dependent on equation-of-state
modeling. The current ≈30% level of precision in the
inferred spins will improve as more binary neutron star
mergers are detected.
The gravitational-wave-based predictions for the prop-

erties of specific neutron stars can be compared to direct
electromagnetic measurements to test the universality of
the neutron star equation of state. Recently, a number of
candidate equations of state that generically violate the
universal relations because of multiple first-order phase
transitions or nonstandard phases of matter have been
proposed [19–22]. Systematic disagreements between
the moments of inertia or radii inferred here and those
measured directly via radio or x-ray observations could
be interpreted as evidence for such features in the
equation of state. Alternatively, because the universal
relations are different in some modified theories of
gravity [12], a discrepancy could instead indicate sup-
port for a modification to general relativity.
Finally, we investigated how the universal relations can

be used to tighten the constraints on Λ1.4 by combining a
gravitational-wave measurement of tidal deformability
with electromagnetic observations of neutron stars in
low-mass x-ray binaries. Successively employing the
binary Love, I-Love, and I-compactness relations to create
an equation-of-state insensitive RðM;Λ1.4Þ relation, we
mapped simultaneous mass and radius measurements into
posterior probability distributions over Λ1.4, which were
then combined with the corresponding posterior from
GW170817. Based on the resulting joint distribution, we
refined the canonical deformability constraint of Ref. [25]
to Λ1.4 ¼ 196þ92

−63 at 90% confidence. This inference of
Λ1.4—the most precise to date—is consistent with many
(e.g., [24,25,29]), but not all (e.g., [30]), previous
GW170817-based estimates, and favors a decidedly soft
equation of state.

As part of the calculation, we found that the most
probable Λ1.4 values derived from observations of differ-
ent neutron stars are not mutually consistent, nor are they
all consistent with the canonical deformability implied by
GW170817. Indeed, the maxima a posteriori inferred
from observations of 4U 1608-52 and KS 1731-260 are
considerably lower than the most probable value indi-
cated by the gravitational-wave event. Since the derived
RðM;Λ1.4Þ relation enables us to map disparate radius
measurements to a common quantity, Λ1.4, regardless of
the equation of state, and since that quantity can be
measured independently using gravitational waves, the
joint inference technique presented here may be useful
in redressing systematic errors affecting current probes
of neutron star radii. In any case, additional gravita-
tional-wave observations of binary neutron star mergers
and more accurate radius measurements, like those
expected from NICER, will permit the universal-
relation-based bounds on canonical deformability to
be further refined.
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APPENDIX A: ROBUSTNESS OF
MULTIMESSENGER CONSTRAINTS

ON TIDAL DEFORMABILITY

In this Appendix, we examine to what degree the joint
electromagnetic and gravitational-wave constraints placed
on the canonical tidal deformability in Sec. V depend on the
particular burster observations considered. The joint pos-
terior distribution for Λ1.4 is recalculated using only five of
the six mass-radius measurements, iterating over each
distinct subset of the observations listed in Table IV. The
resulting six joint posteriors with one burster removed are
plotted in Fig. 8.
We find that the 90% credible confidence interval about

the median Λ1.4 a posteriori is relatively robust against
exclusion of any one of the six burster measurements. The
greatest reduction in the uncertainty about the median is
contributed by the observation of 4U 1724-207, although
the individual effects of the other observations are nearly as
large. Similarly, the median itself only changes by 10%
when any single electromagnetic observation is left out.
The exclusion of 4U 1820-30, the measurement that favors
the largest Λ1.4 values, shifts the median the most
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significantly, down to approximately 175. Thus, the con-
clusion that the electromagnetic mass-radius measurements
disfavor values of tidal deformability that remained com-
patible with GW170817 is robust.

APPENDIX B: PIECEWISE-POLYTROPE
PARAMETRIZATIONS

We calculate piecewise-polytrope fits to the equations of
state considered here and in Ref. [23] for use in the
equations of stellar structure. A three-segment piecewise
polytrope has been shown to accurately represent a wide
range of candidate core equations of state [51]. We
investigate to what degree the piecewise-polytrope para-
metrization is suitable for unified RMF and SHF equations
of state and present the best-fit parameter values for the
equations of state we study.
We adopt the parametrization of Ref. [51], which

approximates the neutron star equation of state by a
three-segment piecewise-polytrope core joined to a low-
density crust equation of state. In this model, the equation
of state in the ith segment is

pðρÞ ¼ Kiρ
Γi ; ðB1Þ

where p is the fluid pressure, ρ is the rest-mass energy
density, Γi is the adiabatic index, and Ki is a constant of
proportionality with units of ðg=cm3Þ1−Γi . The dividing
densities ρ1 ¼ 1014.7 g=cm3, ρ2 ¼ 1015.0 g=cm3 between
core segments are fixed, so the model has four free
parameters: p1 ¼ pðρ1Þ, the pressure at the first dividing
density, and Γ1, Γ2, and Γ3, the adiabatic indices for each of

the polytropic segments. The model for the crust, based on
the SLY4 equation of state, is also fixed. The specification
of the four piecewise-polytrope parameters determines the
other parameters of the equation of state recursively—see
Appendix A of Ref. [51] for details.
To determine the piecewise-polytrope parametrization

for a given unified equation of state, we take its tabulated
pðρÞ data and perform a fit to the model described above,
minimizing the root-mean-square residual

res ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

�X
i

X
j

ðlogpj − logKi þ Γi log ρjÞ2
�s

ðB2Þ

over theN tabulated data points via a Levenberg-Marquardt
algorithm. Here, i labels the piecewise-polytrope segments
and j labels the data points falling in the density range
spanned by the ith segment. The fit is computed up to the
critical density ρmax, the central density that produces the
maximum-mass neutron star.
We first repeat the original analysis of Ref. [51] on

SLY4, MPA1, and MS1b, which are examples of soft,
moderate, and stiff equations of state, respectively. As can
be seen by comparing the results in Table V to Table III
of Ref. [51], we find comparable values for the fit
residual. The fit parameters agree to better than 3%.
The neutron star properties Mmax (maximum mass),
R1.4 (canonical radius of a 1.4 M⊙ star), and I1.338
(moment of inertia of a 1.338 M⊙ star, like PSR
J0737−3039A) are also in good agreement, with <1%
difference. Having established that our fitting routine is
consistent with that of Ref. [51], we proceed to analyze
our unified equations of state.
The results of the fits are presented in Table V. The

maximum masses computed for the piecewise polytropes
are found to agree to within 1% with the values computed
for the tabulated equations of state in virtually all cases.
Similarly, the canonical radii are accurate to better than
1% on average. We remark that the mean error in the
maximum mass is smaller for our unified equations of
state than for those investigated by Ref. [51]; however, the
mean error in the canonical radius is larger, while the
standard deviation of the error is smaller in both cases.
This leads us to conclude that a piecewise-polytrope
representation of the RMF and SHF equations of state
is suitable for astrophysical calculations, but that the
replacement of the unified crust equation of state with
the fixed SLY4 crust slightly affects the computed radius.
Nonetheless, the canonical radius is still recovered to a
good approximation. Given the accuracy of the piecewise-
polytrope models for the unified equations of state, we
adopt this representation for our integrations of the
equations of stellar structure.

FIG. 8. Like Fig. 7, but combining only five of the six
electromagnetic observations with GW170817. The legend in-
dicates, for each curve, which of the six thermonuclear burster
measurements from Table IV has been left out. The Λ1.4
posteriors from GW170817 alone (green) and from all six
bursters plus GW170817 (blue) are shown for reference.
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TABLE V. Piecewise-polytrope parametrizations for the equations of state of interest. We report the fit parameters and residual (B2),
as well as several neutron star properties, for each equation of state (EOS). The pressure p1 is in units of dyn=cm2. The maximum
neutron star mass Mmax supported by the equation of state, the canonical radius R1.4 of a 1.4 M⊙ neutron star, and the double-pulsar
moment of inertia I1.338 are listed. The % error in these observables is obtained via ðOfit=Otab − 1Þ × 100, where Ofit and Otab are the
observables calculated with the best-fit parametrized equation of state and the tabulated equation of state, respectively. The last two rows
give the mean error and the standard deviation (SD) of the error.

EOS log10 p1 Γ1 Γ2 Γ3 res MmaxðM⊙Þ Error (%) R1.4ðkmÞ Error (%) I1.338ð1045 g cm2Þ Error (%)

BCPM 34.385 2.784 2.920 2.687 0.0027 1.980 0.016 11.756 −0.337 1.280 −0.355
BKA20 34.599 2.811 2.451 1.930 0.0050 1.952 −0.196 13.434 0.773 1.590 0.266
BSk20 34.377 3.141 3.196 3.042 0.0053 2.162 −0.195 11.739 0.341 1.301 −0.450
BSk21 34.539 3.456 3.073 2.657 0.0042 2.276 −0.065 12.598 0.671 1.475 −0.188
BSk22 34.593 3.147 2.865 2.668 0.0027 2.260 −0.172 13.114 1.009 1.558 −0.198
BSk23 34.571 3.285 2.954 2.659 0.0035 2.268 −0.106 12.875 0.829 1.520 −0.173
BSk24 34.540 3.457 3.072 2.656 0.0042 2.277 −0.061 12.604 0.662 1.476 −0.168
BSk25 34.525 3.747 3.067 2.417 0.0075 2.222 −0.055 12.403 0.657 1.449 −0.091
BSk26 34.381 3.141 3.193 3.040 0.0052 2.166 −0.177 11.765 0.336 1.305 −0.051
BSP 34.556 3.204 2.637 2.218 0.0057 2.022 −0.160 12.754 0.667 1.489 0.0230
BSR2 34.661 3.310 2.951 2.271 0.0081 2.379 −0.148 13.458 1.049 1.638 0.326
BSR2Y 34.676 3.378 2.216 1.892 0.0138 1.993 −0.415 13.478 1.521 1.648 1.172
BSR6 34.664 3.028 3.046 2.224 0.0148 2.422 −0.300 13.7801 1.902 1.681 0.815
BSR6Y 34.678 3.075 2.257 1.915 0.0163 2.018 −0.566 13.811 0.893 1.693 1.006
DD2 34.638 3.414 3.097 2.322 0.0141 2.415 −0.087 13.234 0.858 1.600 0.302
DD2Y 34.660 3.523 2.427 2.004 0.0221 2.087 −0.203 13.264 1.203 1.613 1.287
DDHd 34.597 3.573 2.649 2.346 0.0118 2.125 −0.541 12.841 2.197 1.529 −0.113
DDME2 34.665 3.639 3.137 2.259 0.0168 2.482 −0.007 13.245 0.589 1.615 0.461
DDME2Y 34.679 3.723 2.376 2.081 0.0194 2.110 −0.135 13.251 0.752 1.621 1.000
FSU2 34.655 2.675 2.477 1.830 0.0088 2.068 −0.166 14.229 1.135 1.731 0.761
FSUGarnet 34.624 3.538 2.556 1.825 0.0097 2.063 −0.085 13.026 0.829 1.565 0.514
G3 34.516 3.115 2.735 2.194 0.0051 1.995 −0.047 12.521 0.091 1.438 −0.105
GM1 34.679 2.937 2.815 2.438 0.0031 2.349 −0.501 14.019 2.514 1.720 −0.397
GM1Y 34.702 3.032 2.716 2.013 0.0126 1.980 −0.608 14.063 2.862 1.740 0.741
IOPB 34.640 3.253 2.664 1.786 0.0141 2.147 −0.038 13.354 0.368 1.614 0.997
KDE0v1 34.366 2.791 2.897 2.779 0.0049 1.967 −0.081 11.586 −0.072 1.250 −0.310
Model1 34.601 3.247 2.560 1.830 0.0094 2.012 −0.022 13.053 0.425 1.552 0.506
MPA1 34.477 3.441 3.580 2.884 0.0078 2.434 −0.912 12.343 −1.250 1.429 −0.444
MS1b 34.845 3.410 3.030 1.467 0.0154 2.736 −1.647 14.535 −0.645 1.870 −2.276
NL3 34.847 3.246 3.098 1.298 0.0237 2.759 −0.540 14.810 1.799 1.916 0.938
NL3ωρ 34.821 3.974 3.127 1.552 0.0202 2.745 −0.240 13.796 0.745 1.744 0.621
NL3ωρY 34.809 3.922 2.264 2.166 0.0120 2.334 −0.292 13.773 0.579 1.713 −1.117
NL3ωρYss 34.805 3.913 1.895 2.106 0.0141 2.138 −0.260 13.735 0.502 1.642 −5.308
NL3Y 34.810 3.092 2.222 2.214 0.0092 2.303 −1.049 14.813 1.768 1.903 0.216
NL3Yss 34.802 3.062 1.766 2.051 0.0118 2.058 −0.496 14.812 1.767 1.900 0.055
Rs 34.555 2.674 2.670 2.670 0.0017 2.104 −0.584 13.219 2.568 1.532 −0.845
SINPA 34.593 3.321 2.563 1.839 0.0088 1.999 −0.064 12.941 0.544 1.535 0.408
SK255 34.549 2.623 2.758 2.703 0.0031 2.138 −0.253 13.245 1.099 1.531 −0.625
SK272 34.574 2.730 2.848 2.766 0.0037 2.225 −0.245 13.370 0.766 1.568 −0.475
SKa 34.546 2.810 2.873 2.783 0.0026 2.202 −0.276 13.031 1.209 1.512 −0.594
SKb 34.507 3.143 2.909 2.808 0.0047 2.174 −0.630 12.497 2.675 1.437 −0.744
SkI2 34.613 2.658 2.588 2.649 0.0033 2.149 −0.614 13.825 2.893 1.648 −0.796
SkI3 34.632 2.824 2.676 2.697 0.0027 2.230 −0.397 13.765 1.911 1.657 −0.473
SkI4 34.507 3.111 2.909 2.734 0.0024 2.161 −0.340 12.517 1.460 1.439 −0.480
SkI5 34.663 2.587 2.572 2.718 0.0043 2.224 −0.690 14.520 3.502 1.776 −0.862
SkI6 34.519 3.107 2.918 2.734 0.0020 2.183 −0.287 12.611 1.272 1.457 −0.415
SkMP 34.508 2.782 2.777 2.729 0.0007 2.096 −0.489 12.699 1.941 1.447 −0.756
SKOp 34.451 2.672 2.712 2.635 0.0015 1.966 −0.321 12.228 1.143 1.350 −0.645
SLY230a 34.399 3.150 3.082 2.789 0.0038 2.093 −0.237 11.821 0.174 1.314 −0.357
SLY2 34.392 2.959 2.984 2.829 0.0041 2.042 −0.538 11.777 0.220 1.295 −0.426

(Table continued)
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